skip to main content


Title: Relative Impact of Sea Ice and Temperature Changes on Arctic Marine Production
Abstract

We use a modern Earth system model to approximate the relative importance of ice versus temperature on Arctic marine ecosystem dynamics. We show that while the model adequately simulates ice volume, water temperature, air‐sea CO2flux, and annual primary production in the Arctic, itunderestimates upper water column nitrate across the region. This nitrate bias is likely responsible for the apparent underestimation of ice algae production. Despite this shortcoming, the model appears to be a useful tool for exploring the impacts of environmental change on phytoplankton production and carbon dynamics over the Arctic Ocean. Our experiments indicate that under a warmer climate scenario, the percentage of ocean warming that could be apportioned to a reduction in ice area ranged from 11% to 100%, while decreasing ice area could account for 22–100% of the increase in annual ocean primary production. The change to CO2air‐sea flux in response to ice and temperature changes averaged an Arctic‐wide 5.5 Tg C yr−1(3.5%) increase, into the ocean. This increased carbon sink may be short‐lived, as ice cover continues to decrease and the ocean warms. The change in carbon fixation from phytoplankton in response to increased temperatures and reduced ice was generally more than a magnitude larger than the changes to CO2flux, highlighting the importance of fully considering changes to the marine ecosystem when assessing Arctic carbon cycle dynamics. Our work demonstrates the importance of ice dynamics in controlling ocean warming and production and thus the need for well‐behaved ice and BGC models within Earth system models if we hope to accurately predict Arctic changes.

 
more » « less
Award ID(s):
1738861
NSF-PAR ID:
10449665
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Biogeosciences
Volume:
125
Issue:
7
ISSN:
2169-8953
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The Marine Biogeochemistry Library (MARBL) is a prognostic ocean biogeochemistry model that simulates marine ecosystem dynamics and the coupled cycles of carbon, nitrogen, phosphorus, iron, silicon, and oxygen. MARBL is a component of the Community Earth System Model (CESM); it supports flexible ecosystem configuration of multiple phytoplankton and zooplankton functional types; it is also portable, designed to interface with multiple ocean circulation models. Here, we present scientific documentation of MARBL, describe its configuration in CESM2 experiments included in the Coupled Model Intercomparison Project version 6 (CMIP6), and evaluate its performance against a number of observational data sets. The model simulates present‐day air‐sea CO2flux and many aspects of the carbon cycle in good agreement with observations. However, the simulated integrated uptake of anthropogenic CO2is weak, which we link to poor thermocline ventilation, a feature evident in simulated chlorofluorocarbon distributions. This also contributes to larger‐than‐observed oxygen minimum zones. Moreover, radiocarbon distributions show that the simulated circulation in the deep North Pacific is extremely sluggish, yielding extensive oxygen depletion and nutrient trapping at depth. Surface macronutrient biases are generally positive at low latitudes and negative at high latitudes. CESM2 simulates globally integrated net primary production (NPP) of 48 Pg C yr−1and particulate export flux at 100 m of 7.1 Pg C yr−1. The impacts of climate change include an increase in globally integrated NPP, but substantial declines in the North Atlantic. Particulate export is projected to decline globally, attributable to decreasing export efficiency associated with changes in phytoplankton community composition.

     
    more » « less
  2. Phytoplankton and sea ice algae are traditionally considered to be the main primary producers in the Arctic Ocean. In this Perspective, we explore the importance of benthic primary producers (BPPs) encompassing microalgae, macroalgae, and seagrasses, which represent a poorly quantified source of Arctic marine primary production. Despite scarce observations, models predict that BPPs are widespread, colonizing ~3 million km2of the extensive Arctic coastal and shelf seas. Using a synthesis of published data and a novel model, we estimate that BPPs currently contribute ~77 Tg C y−1of primary production to the Arctic, equivalent to ~20 to 35% of annual phytoplankton production. Macroalgae contribute ~43 Tg C y−1, seagrasses contribute ~23 Tg C y−1, and microalgae-dominated shelf habitats contribute ~11 to 16 Tg C y−1. Since 2003, the Arctic seafloor area exposed to sunlight has increased by ~47,000 km2y−1, expanding the realm of BPPs in a warming Arctic. Increased macrophyte abundance and productivity is expected along Arctic coastlines with continued ocean warming and sea ice loss. However, microalgal benthic primary production has increased in only a few shelf regions despite substantial sea ice loss over the past 20 y, as higher solar irradiance in the ice-free ocean is counterbalanced by reduced water transparency. This suggests complex impacts of climate change on Arctic light availability and marine primary production. Despite significant knowledge gaps on Arctic BPPs, their widespread presence and obvious contribution to coastal and shelf ecosystem production call for further investigation and for their inclusion in Arctic ecosystem models and carbon budgets.

     
    more » « less
  3. Abstract

    The Chukchi Sea is an increasing CO2sink driven by rapid climate changes. Understanding the seasonal variation of air‐sea CO2exchange and the underlying mechanisms of biogeochemical dynamics is important for predicting impacts of climate change on and feedbacks by the ocean. Here, we present a unique data set of underway sea surface partial pressure of CO2(pCO2) and discrete samples of biogeochemical properties collected in five consecutive cruises in 2014 and examine the seasonal variations in air‐sea CO2flux and net community production (NCP). We found that thermal and non‐thermal effects have different impacts on sea surfacepCO2and thus the air‐sea CO2flux in different water masses. The Bering summer water combined with meltwater has a significantly greater atmospheric CO2uptake potential than that of the Alaskan Coastal Water in the southern Chukchi Sea in summer, due to stronger biological CO2removal and a weaker thermal effect. By analyzing the seasonal drawdown of dissolved inorganic carbon (DIC) and nutrients, we found that DIC‐based NCP was higher than nitrate‐based NCP by 66%–84% and attributable to partially decoupled C and N uptake because of a variable phytoplankton stoichiometry. A box model with a non‐Redfield C:N uptake ratio can adequately reproduce observedpCO2and DIC, which reveals that, during the intensive growing season (late spring to early summer), 30%–46% CO2uptake in the Chukchi Sea was supported by a flexible stoichiometry of phytoplankton. These findings have important ramification for forecasting the responses of CO2uptake of the Chukchi ecosystem to climate change.

     
    more » « less
  4. Abstract

    The biogeochemical cycling of nitrogen (N) plays a critical role in supporting marine ecosystems and controlling primary production. Nitrification, the oxidation of ammonia (NH3) by microorganisms, is an important process in the marine N cycle, supplying nitrate (), the primary source of N that fuels new phytoplankton growth, and the primary substrate for the microbial process of denitrification. Understanding nitrification in the Chukchi Sea, the shallow sea overlying the continental shelf north of Alaska and the Bering Strait, is particularly important as phytoplankton growth there has been shown to be limited by N. However, the controls on nitrification in the water column and potential effects of climate change remain unknown. This study seeks to characterize the controls on nitrification in the Chukchi Sea. We found light to be a strong control on nitrification rates. Nitrification was undetectable at light levels above 23 μmol photons m−2 s−1. Subsequently, sea ice concentration was related to nitrification, with rates being higher at stations with high ice cover where light transmission to the water column was reduced. High ammonium () concentrations also enhanced nitrification, suggesting that nitrifying organisms were substrate‐limited, likely due to competition for from phytoplankton. Unlike previous experimental studies, we found that nitrification rates were higher under low pH conditions. As the effects of ocean acidification and warming disproportionately impact the Arctic, nitrification rates will undoubtedly be affected. Our results will help guide future studies on potential implications of climate change on the biogeochemistry of N in the Chukchi Sea.

     
    more » « less
  5. null (Ed.)
    Continental slopes – steep regions between the shelf break and abyssal ocean – play key roles in the climatology and ecology of the Arctic Ocean. Here, through review and synthesis, we find that the narrow slope regions contribute to ecosystem functioning disproportionately to the size of the habitat area (∼6% of total Arctic Ocean area). Driven by inflows of sub-Arctic waters and steered by topography, boundary currents transport boreal properties and particle loads from the Atlantic and Pacific Oceans along-slope, thus creating both along and cross-slope connectivity gradients in water mass properties and biomass. Drainage of dense, saline shelf water and material within these, and contributions of river and meltwater also shape the characteristics of the slope domain. These and other properties led us to distinguish upper and lower slope domains; the upper slope (shelf break to ∼800 m) is characterized by stronger currents, warmer sub-surface temperatures, and higher biomass across several trophic levels (especially near inflow areas). In contrast, the lower slope has slower-moving currents, is cooler, and exhibits lower vertical carbon flux and biomass. Distinct zonation of zooplankton, benthic and fish communities result from these differences. Slopes display varying levels of system connectivity: (1) along-slope through property and material transport in boundary currents, (2) cross-slope through upwelling of warm and nutrient rich water and down-welling of dense water and organic rich matter, and (3) vertically through shear and mixing. Slope dynamics also generate separating functions through (1) along-slope and across-slope fronts concentrating biological activity, and (2) vertical gradients in the water column and at the seafloor that maintain distinct physical structure and community turnover. At the upper slope, climatic change is manifested in sea-ice retreat, increased heat and mass transport by sub-Arctic inflows, surface warming, and altered vertical stratification, while the lower slope has yet to display evidence of change. Model projections suggest that ongoing physical changes will enhance primary production at the upper slope, with suspected enhancing effects for consumers. We recommend Pan-Arctic monitoring efforts of slopes given that many signals of climate change appear there first and are then transmitted along the slope domain. 
    more » « less