The spectral shape of the X-ray emission in solar flares varies with the event size, with small flares generally exhibiting softer spectra than large events, indicative of a relatively lower number of accelerated electrons at higher energies. We investigate two microflares of GOES classes A9 and C1 (after background subtraction) observed by STIX onboard Solar Orbiter with exceptionally strong nonthermal emission. We complement the hard X-ray imaging and spectral analysis by STIX with co-temporal observations in the (E)UV and visual range by AIA and HMI to investigate what makes these microflares so efficient in high-energy particle acceleration. We made a preselection of events in the STIX flare catalog based on the ratio of the thermal to nonthermal quicklook X-ray emission. The STIX spectrogram science data were used to perform spectral fitting to identify the non-thermal and thermal components. The STIX X-ray images were reconstructed to analyze the spatial distribution of the precipitating electrons and the hard X-ray emission they produce. The EUV images from SDO/AIA and SDO/HMI LOS magnetograms were analyzed to better understand the magnetic environment and the chromospheric and coronal response. For the A9 event, EOVSA microwave observations were available, allowing for image reconstruction in the radio domain. We performed case studies of two microflares observed by STIX on October 11, 2021 and November 10, 2022, which showed unusually hard microflare X-ray spectra with power-law indices of the electron flux distributions of $ 0.25)$ and $ 0.23),$ during their non-thermal peaks and photon energies up to 76\,keV and 50\,keV,\,respectively. For both events under study, we found that one footpoint is located within a sunspot covering areas with mean magnetic flux densities in excess of 1500\,G, suggesting that the hard electron spectra are caused by the strong magnetic fields the flare loops are rooted in. Additionally, we revisited a previously published unusually hard RHESSI microflare and found that in this event, there was also one flare kernel located within a sunspot, which corroborates the result from the two hard STIX microflares under study in this work. The characteristics of the strong photospheric magnetic fields inside the sunspot umbrae and penumbrae where flare loops are rooted play an important role in the generation of exceptionally hard X-ray spectra in these microflares.
We identify a set of ∼100 “cold” solar flares and perform a statistical analysis of them in the microwave range. Cold flares are characterized by a weak thermal response relative to nonthermal emission. This work is a follow-up of a previous statistical study of cold flares, which focused on hard X-ray emission to quantify the flare nonthermal component. Here, we focus on the microwave emission. The thermal response is evaluated by the soft X-ray emission measured by the GOES X-ray sensors. We obtain spectral parameters of the flare gyrosynchrotron emission and reveal patterns of their temporal evolution. The main results of the previous statistical study are confirmed: as compared to a “mean” flare, the cold flares have shorter durations, higher spectral peak frequencies, and harder spectral indices above the spectral peak. Nonetheless, there are some cold flares with moderate and low peak frequencies. In the majority of cold flares, we find evidence of the Razin effect in the microwave spectra, indicative of rather dense flaring loops. We discuss the results in the context of the electron acceleration efficiency.
more » « less- Award ID(s):
- 2121632
- NSF-PAR ID:
- 10449709
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 954
- Issue:
- 2
- ISSN:
- 0004-637X
- Format(s):
- Medium: X Size: Article No. 122
- Size(s):
- Article No. 122
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract When and where the magnetic field energy is released and converted in eruptive solar flares remains an outstanding topic in solar physics. To shed light on this question, here we report multiwavelength observations of a C9.4-class eruptive limb flare that occurred on 2017 August 20. The flare, accompanied by a magnetic flux rope eruption and a white light coronal mass ejection, features three post-impulsive X-ray and microwave bursts immediately following its main impulsive phase. For each burst, both microwave and X-ray imaging suggest that the nonthermal electrons are located in the above-the-loop-top region. Interestingly, contrary to many other flares, the peak flux of the three post-impulsive microwave and X-ray bursts shows an increase for later bursts. Spectral analysis reveals that the sources have a hardening spectral index, suggesting a more efficient electron acceleration into the later post-impulsive bursts. We observe a positive correlation between the acceleration of the magnetic flux rope and the nonthermal energy release during the post-impulsive bursts in the same event. Intriguingly, different from some other eruptive events, this correlation does not hold for the main impulse phase of this event, which we interpret as energy release due to the tether-cutting reconnection before the primary flux rope acceleration occurs. In addition, using footpoint brightenings at conjugate flare ribbons, a weakening reconnection guide field is inferred, which may also contribute to the hardening of the nonthermal electrons during the post-impulsive phase.
-
The standard flare model, despite its success, is limited in comprehensively explaining the various processes involving nonthermal particles. One such missing ingredient is a detailed understanding of the various processes involved during the transport of accelerated electrons from their site of acceleration to different parts of the flare region. Here we use simultaneous radio and X-ray observations from the Expanded Owens Valley Solar Array and the Spectrometer/Telescope for Imaging X-rays on board the Solar Orbiter, respectively, from two distinct viewing perspectives, to study the electron transport processes. Through detailed spectral modeling of the coronal source using radio data and footpoint sources using X-ray spectra, we compare the nonthermal electron distribution at the coronal and footpoint sources. We find that the flux of the nonthermal electrons precipitated at the footpoint is an order of magnitude greater than that trapped in the looptop, consistent with earlier works that primarily used X-ray for their studies. In addition, we find that the electron spectral indices obtained from X-ray footpoints are significantly softer than the spectral hardness of the nonthermal electron distribution in the corona. We interpret these differences based on transport effects and the difference in sensitivity of microwave and X-ray observations to different regimes of electron energies. Such an understanding is crucial for leveraging different diagnostic methods of nonthermal electrons simultaneously to achieve a more comprehensive understanding of the electron acceleration and transport processes of solar flares.more » « less
-
Abstract Extreme-ultraviolet late phase (ELP) refers to the second extreme-ultraviolet (EUV) radiation enhancement observed in certain solar flares, which usually occurs tens of minutes to several hours after the peak of soft X-ray emission. The coronal loop system that hosts the ELP emission is often different from the main flaring arcade, and the enhanced EUV emission therein may imply an additional heating process. However, the origin of the ELP remains rather unclear. Here we present the analysis of a C1.4 flare that features such an ELP, which is also observed in microwave wavelengths by the Expanded Owens Valley Solar Array. Similar to the case of the ELP, we find a gradual microwave enhancement that occurs about 3 minutes after the main impulsive phase microwave peaks. Radio sources coincide with both foot points of the ELP loops and spectral fits on the time-varying microwave spectra demonstrate a clear deviation of the electron distribution from the Maxwellian case, which could result from injected nonthermal electrons or nonuniform heating to the footpoint plasma. We further point out that the delayed microwave enhancement suggests the presence of an additional heating process, which could be responsible for the evaporation of heated plasma that fills the ELP loops, producing the prolonged ELP emission.more » « less
-
This paper identifies several unsolved questions about solar flares, which can potentially be answered or at least clarified with mm/submm observations with ALMA. We focus on such questions as preflare phases and the initiation of solar flares and the efficiency of particle acceleration during flares. To investigate the preflare phase we propose to use the extraordinary sensitivity and high spatial resolution of ALMA, which promises to identify very early enhancements of preflare emission with high spatial resolution and link them to the underlying photospheric magnetic structure and chromospheric flare ribbons. In addition to revealing the flare onsets, these preflare measurements will aid in the investigation of particle acceleration in multiple ways. High-frequency imaging spectroscopy data in combination with the microwave data will permit the quantification of the high-energy cutoff in the nonthermal electron spectra, thus helping to constrain the acceleration efficiency. Detection and quantification of secondary relativistic positron (produced due to nonthermal accelerated ions) contribution using the imaging polarimetry data will help constrain acceleration efficiency of nonthermal nuclei in flares. Detection of a “mysterious” rising spectral component with high spatial resolution will help determine the emission mechanism responsible for this component, and will then help in quantifying this either nonthermal or thermal component of the flaring plasma. We discuss what ALMA observing mode(s) would be the most suitable for addressing these objectives.more » « less