Abstract A subclass of early impulsive solar flares, cold flares, was proposed to represent a clean case, where the release of the free magnetic energy (almost) entirely goes to the acceleration of the nonthermal electrons, while the observed thermal response is entirely driven by the nonthermal energy deposition to the ambient plasma. This paper studies one more example of a cold flare, which was observed by a unique combination of instruments. In particular, this is the first cold flare observed with the Expanded Owens Valley Solar Array and, thus, for which the dynamical measurement of the coronal magnetic field and other parameters at the flare site is possible. With these new data, we quantified the coronal magnetic field at the flare site but did not find statistically significant variations of the magnetic field within the measurement uncertainties. We estimated that the uncertainty in the corresponding magnetic energy exceeds the thermal and nonthermal energies by an order of magnitude; thus, there should be sufficient free energy to drive the flare. We discovered a very prominent soft-hard-soft spectral evolution of the microwave-producing nonthermal electrons. We computed energy partitions and concluded that the nonthermal energy deposition is likely sufficient to drive the flare thermal response similarly to other cold flares. 
                        more » 
                        « less   
                    
                            
                            Cold Solar Flares. I. Microwave Domain
                        
                    
    
            Abstract We identify a set of ∼100 “cold” solar flares and perform a statistical analysis of them in the microwave range. Cold flares are characterized by a weak thermal response relative to nonthermal emission. This work is a follow-up of a previous statistical study of cold flares, which focused on hard X-ray emission to quantify the flare nonthermal component. Here, we focus on the microwave emission. The thermal response is evaluated by the soft X-ray emission measured by the GOES X-ray sensors. We obtain spectral parameters of the flare gyrosynchrotron emission and reveal patterns of their temporal evolution. The main results of the previous statistical study are confirmed: as compared to a “mean” flare, the cold flares have shorter durations, higher spectral peak frequencies, and harder spectral indices above the spectral peak. Nonetheless, there are some cold flares with moderate and low peak frequencies. In the majority of cold flares, we find evidence of the Razin effect in the microwave spectra, indicative of rather dense flaring loops. We discuss the results in the context of the electron acceleration efficiency. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2121632
- PAR ID:
- 10449709
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 954
- Issue:
- 2
- ISSN:
- 0004-637X
- Format(s):
- Medium: X Size: Article No. 122
- Size(s):
- Article No. 122
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            The spectral shape of the X-ray emission in solar flares varies with the event size, with small flares generally exhibiting softer spectra than large events, indicative of a relatively lower number of accelerated electrons at higher energies. We investigate two microflares of GOES classes A9 and C1 (after background subtraction) observed by STIX onboard Solar Orbiter with exceptionally strong nonthermal emission. We complement the hard X-ray imaging and spectral analysis by STIX with co-temporal observations in the (E)UV and visual range by AIA and HMI to investigate what makes these microflares so efficient in high-energy particle acceleration. We made a preselection of events in the STIX flare catalog based on the ratio of the thermal to nonthermal quicklook X-ray emission. The STIX spectrogram science data were used to perform spectral fitting to identify the non-thermal and thermal components. The STIX X-ray images were reconstructed to analyze the spatial distribution of the precipitating electrons and the hard X-ray emission they produce. The EUV images from SDO/AIA and SDO/HMI LOS magnetograms were analyzed to better understand the magnetic environment and the chromospheric and coronal response. For the A9 event, EOVSA microwave observations were available, allowing for image reconstruction in the radio domain. We performed case studies of two microflares observed by STIX on October 11, 2021 and November 10, 2022, which showed unusually hard microflare X-ray spectra with power-law indices of the electron flux distributions of $ 0.25)$ and $ 0.23),$ during their non-thermal peaks and photon energies up to 76\,keV and 50\,keV,\,respectively. For both events under study, we found that one footpoint is located within a sunspot covering areas with mean magnetic flux densities in excess of 1500\,G, suggesting that the hard electron spectra are caused by the strong magnetic fields the flare loops are rooted in. Additionally, we revisited a previously published unusually hard RHESSI microflare and found that in this event, there was also one flare kernel located within a sunspot, which corroborates the result from the two hard STIX microflares under study in this work. The characteristics of the strong photospheric magnetic fields inside the sunspot umbrae and penumbrae where flare loops are rooted play an important role in the generation of exceptionally hard X-ray spectra in these microflares.more » « less
- 
            Abstract When and where the magnetic field energy is released and converted in eruptive solar flares remains an outstanding topic in solar physics. To shed light on this question, here we report multiwavelength observations of a C9.4-class eruptive limb flare that occurred on 2017 August 20. The flare, accompanied by a magnetic flux rope eruption and a white light coronal mass ejection, features three post-impulsive X-ray and microwave bursts immediately following its main impulsive phase. For each burst, both microwave and X-ray imaging suggest that the nonthermal electrons are located in the above-the-loop-top region. Interestingly, contrary to many other flares, the peak flux of the three post-impulsive microwave and X-ray bursts shows an increase for later bursts. Spectral analysis reveals that the sources have a hardening spectral index, suggesting a more efficient electron acceleration into the later post-impulsive bursts. We observe a positive correlation between the acceleration of the magnetic flux rope and the nonthermal energy release during the post-impulsive bursts in the same event. Intriguingly, different from some other eruptive events, this correlation does not hold for the main impulse phase of this event, which we interpret as energy release due to the tether-cutting reconnection before the primary flux rope acceleration occurs. In addition, using footpoint brightenings at conjugate flare ribbons, a weakening reconnection guide field is inferred, which may also contribute to the hardening of the nonthermal electrons during the post-impulsive phase.more » « less
- 
            Abstract We present results from an extensive follow-up campaign of the tidal disruption event (TDE) ASASSN-15oi spanningδt ∼ 10–3000 days, offering an unprecedented window into the multiwavelength properties of a TDE during its first ≈8 yr of evolution. ASASSN-15oi is one of the few TDEs with strong detections at X-ray, optical/UV, and radio wavelengths and it also featured two delayed radio flares atδt ∼ 180 days andδt ∼ 1400 days. Our observations atδt > 1400 days reveal an absence of thermal X-rays, a late-time variability in the nonthermal X-ray emission, and sharp declines in the nonthermal X-ray and radio emission atδt ∼ 2800 days and ∼3000 days, respectively. The UV emission shows no significant evolution atδt > 400 days and remains above the pre-TDE level. We show that a cooling envelope model can explain the thermal emission consistently across all epochs. We also find that a scenario involving episodic ejection of material due to stream–stream collisions can possibly explain the first radio flare. Given the peculiar spectral and temporal evolution of the late-time emission, however, constraining the origins of the second radio flare and the nonthermal X-rays remains challenging. Our study underscores the critical role of long-term, multiwavelength follow-up to fully characterize the extended evolutionary phases of a TDE.more » « less
- 
            The standard flare model, despite its success, is limited in comprehensively explaining the various processes involving nonthermal particles. One such missing ingredient is a detailed understanding of the various processes involved during the transport of accelerated electrons from their site of acceleration to different parts of the flare region. Here we use simultaneous radio and X-ray observations from the Expanded Owens Valley Solar Array and the Spectrometer/Telescope for Imaging X-rays on board the Solar Orbiter, respectively, from two distinct viewing perspectives, to study the electron transport processes. Through detailed spectral modeling of the coronal source using radio data and footpoint sources using X-ray spectra, we compare the nonthermal electron distribution at the coronal and footpoint sources. We find that the flux of the nonthermal electrons precipitated at the footpoint is an order of magnitude greater than that trapped in the looptop, consistent with earlier works that primarily used X-ray for their studies. In addition, we find that the electron spectral indices obtained from X-ray footpoints are significantly softer than the spectral hardness of the nonthermal electron distribution in the corona. We interpret these differences based on transport effects and the difference in sensitivity of microwave and X-ray observations to different regimes of electron energies. Such an understanding is crucial for leveraging different diagnostic methods of nonthermal electrons simultaneously to achieve a more comprehensive understanding of the electron acceleration and transport processes of solar flares.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
