skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 1, 2025

Title: Effects of Mesoscale Eddies on Southern Ocean Biogeochemistry
Abstract The Southern Ocean is rich in highly dynamic mesoscale eddies and substantially modulates global biogeochemical cycles. However, the overall surface and subsurface effects of eddies on the Southern Ocean biogeochemistry have not been quantified observationally at a large scale. Here, we co‐locate eddies, identified in the Meta3.2DT satellite altimeter‐based product, with biogeochemical Argo floats to determine the effects of eddies on the dissolved inorganic carbon (DIC), nitrate, and dissolved oxygen concentrations in the upper 1,500 m of the ice‐free Southern Ocean, as well as the eddy effects on the carbon fluxes in this region. DIC and nitrate concentrations are lower in anticyclonic eddies (AEs) and increased in cyclonic eddies (CEs), while dissolved oxygen anomalies switch signs above (CEs: positive, AEs: negative) and below the mixed layer (CEs: negative, AEs: positive). We attribute these anomalies primarily to eddy pumping (isopycnal heave), as well as eddy trapping for oxygen. Maximum anomalies in all tracers occur at greater depths in the subduction zone north of the Antarctic Circumpolar Current (ACC) compared to the upwelling region in the ACC, reflecting differences in background vertical structures. Eddy effects on air–sea exchange have significant seasonal variability, with additional outgassing in CEs in fall (physical process) and additional oceanic uptake in AEs and CEs in spring (biological and physical process). Integrated over the Southern Ocean, AEs contribute 0.01 Pg C (7 ) to the Southern Ocean carbon uptake, and CEs offset this by 0.01 Pg C (2 ). These findings underscore the importance of considering eddy impacts in observing networks and climate models.  more » « less
Award ID(s):
2149501 1948599 1948281 1936222 2332379
PAR ID:
10571792
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
AGU
Date Published:
Journal Name:
AGU Advances
Volume:
5
Issue:
6
ISSN:
2576-604X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Measurements of pH and nitrate from the Southern Ocean Carbon and Climate Observations and Modeling array of profiling floats were used to assess the ratios of dissolved inorganic carbon (DIC) and nitrate (NO3) uptake during the spring to summer bloom period throughout the Southern Ocean. Two hundred and forty‐three bloom periods were observed by 115 floats from 30°S to 70°S. Similar calculations were made using the Takahashi surface DIC and nitrate climatology. To separate the effects of atmospheric CO2exchange and mixing from phytoplankton uptake, the ratios of changes in DIC to nitrate of surface waters (ΔDIC/ΔNO3) were computed in the Biogeochemical Southern Ocean State Estimate (B‐SOSE) model. Phytoplankton uptake of DIC and nitrate are fixed in B‐SOSE at the Redfield Ratio (RR; 6.6 mol C/mol N). Deviations in the B‐SOSE ΔDIC/ΔNO3must be due to non‐biological effects of CO2gas exchange and mixing. ΔDIC/ΔNO3values observed by floats and in the Takahashi climatology were corrected for the non‐biological effects using B‐SOSE. The corrected, in situ biological uptake ratio (C:N) occurs at values similar to the RR, with two major exceptions. North of 40°S biological DIC uptake is observed with little or no change in nitrate giving high C:N. In the latitude band at 55°S, the Takahashi data give a low C:N value, while floats are high. This may be due to a change in CO2air‐sea exchange in this region from uptake during the Takahashi reference year of 2005 to outgassing of CO2during the years sampled by floats. 
    more » « less
  2. Abstract Despite its importance for the global cycling of carbon, there are still large gaps in our understanding of the processes driving annual and seasonal carbon fluxes in the high‐latitude Southern Ocean. This is due in part to a historical paucity of observations in this remote, turbulent, and seasonally ice‐covered region. Here, we use autonomous biogeochemical float data spanning 6 full seasonal cycles and with circumpolar coverage of the Southern Ocean, complemented by atmospheric reanalysis, to construct a monthly climatology of the mixed layer budget of dissolved inorganic carbon (DIC). We investigate the processes that determine the annual mean and seasonal cycle of DIC fluxes in two different zones of the Southern Ocean—the Sea Ice Zone (SIZ) and Antarctic Southern Zone (ASZ). We find that, annually, mixing with carbon‐rich waters at the base of the mixed layer supplies DIC which is, in the ASZ, either used for net biological production or outgassed to the atmosphere. In contrast, in the SIZ, where carbon outgassing and the biological pump are weaker, the surplus of DIC is instead advected northward to the ASZ. In other words, carbon outgassing in the southern Antarctic Circumpolar Current (ACC), which has been attributed to remineralized carbon from deep water upwelled in the ACC, is also due to the wind‐driven transport of DIC from the SIZ. These results stem from the first observation‐based carbon budget of the circumpolar Southern Ocean and thus provide a useful benchmark to evaluate climate models, which have significant biases in this region. 
    more » « less
  3. Abstract The Southern Ocean, an important region for the uptake of anthropogenic carbon dioxide (CO2), features strong surface currents due to substantial mesoscale meanders and eddies. These features interact with the wind and modify the momentum transfer from the atmosphere to the ocean. Although such interactions are known to reduce momentum transfer, their impact on air‐sea carbon exchange remains unclear. Using a 1/20° physical‐biogeochemical coupled ocean model, we examined the impact of the current‐wind interaction on the surface carbon concentration and the air‐sea carbon exchange in the Southern Ocean. The current‐wind interaction decreased winter partial pressure of CO2(pCO2) at the ocean surface mainly south of the northern subantarctic front. It also reducedpCO2in summer, indicating enhanced uptake, but not to the same extent as the winter loss. Consequently, the net outgassing of CO2was found to be reduced by approximately 17%when including current‐wind interaction. These changes stem from the combined effect of vertical mixing and Ekman divergence. A budget analysis of dissolved inorganic carbon (DIC) revealed that a weakening of vertical mixing by current‐wind interaction reduces the carbon supply from below, and particularly so in winter. The weaker wind stress additionally lowers the subsurface DIC concentration in summer, which can affect the vertical diffusive flux of carbon in winter. Our study suggests that ignoring current‐wind interactions in the Southern Ocean can overestimate winter CO2outgassing. 
    more » « less
  4. Through biological activity, marine dissolved inorganic carbon (DIC) is transformed into different types of biogenic carbon available for export to the ocean interior, including particulate organic carbon (POC), dissolved organic carbon (DOC), and particulate inorganic carbon (PIC). Each biogenic carbon pool has a different export efficiency that impacts the vertical ocean carbon gradient and drives natural air–sea carbon dioxide gas (CO2) exchange. In the Southern Ocean (SO), which presently accounts for ~40% of the anthropogenic ocean carbon sink, it is unclear how the production of each biogenic carbon pool contributes to the contemporary air–sea CO2exchange. Based on 107 independent observations of the seasonal cycle from 63 biogeochemical profiling floats, we provide the basin-scale estimate of distinct biogenic carbon pool production. We find significant meridional variability with enhanced POC production in the subantarctic and polar Antarctic sectors and enhanced DOC production in the subtropical and sea-ice-dominated sectors. PIC production peaks between 47°S and 57°S near the “great calcite belt.” Relative to an abiotic SO, organic carbon production enhances CO2uptake by 2.80 ± 0.28 Pg C y1, while PIC production diminishes CO2uptake by 0.27 ± 0.21 Pg C y1. Without organic carbon production, the SO would be a CO2source to the atmosphere. Our findings emphasize the importance of DOC and PIC production, in addition to the well-recognized role of POC production, in shaping the influence of carbon export on air–sea CO2exchange. 
    more » « less
  5. Carré, Matthieu (Ed.)
    Despite their importance for Earth’s climate and paleoceanography, the cycles of carbon (C) and its isotope13C in the ocean are not well understood. Models typically do not decompose C and13C storage caused by different physical, biological, and chemical processes, which makes interpreting results difficult. Consequently, basic observed features, such as the decreased carbon isotopic signature (δ13CDIC) of the glacial ocean remain unexplained. Here, we review recent progress in decomposing Dissolved Inorganic Carbon (DIC) into preformed and regenerated components, extend a precise and complete decomposition to δ13CDIC, and apply it to data-constrained model simulations of the Preindustrial (PI) and Last Glacial Maximum (LGM) oceans. Regenerated components, from respired soft-tissue organic matter and dissolved biogenic calcium carbonate, are reduced in the LGM, indicating a decrease in the active part of the biological pump. Preformed components increase carbon storage and decrease δ13CDICby 0.55 ‰ in the LGM. We separate preformed into saturation and disequilibrium components, each of which have biological and physical contributions. Whereas the physical disequilibrium in the PI is negative for both DIC and δ13CDIC, and changes little between climate states, the biological disequilibrium is positive for DIC but negative for δ13CDIC, a pattern that is magnified in the LGM. The biological disequilibrium is the dominant driver of the increase in glacial ocean C and the decrease in δ13CDIC, indicating a reduced sink of biological carbon. Overall, in the LGM, biological processes increase the ocean’s DIC inventory by 355 Pg more than in the PI, reduce its mean δ13CDICby an additional 0.52 ‰, and contribute 60 ppm to the lowering of atmospheric CO2. Spatial distributions of the δ13CDICcomponents are presented. Commonly used approximations based on apparent oxygen utilization and phosphate are evaluated and shown to have large errors. 
    more » « less