skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Do lakes feel the burn? Ecological consequences of increasing exposure of lakes to fire in the continental United States
Abstract Wildfires are becoming larger and more frequent across much of the United States due to anthropogenic climate change. No studies, however, have assessed fire prevalence in lake watersheds at broad spatial and temporal scales, and thus it is unknown whether wildfires threaten lakes and reservoirs (hereafter, lakes) of the United States. We show that fire activity has increased in lake watersheds across the continental United States from 1984 to 2015, particularly since 2005. Lakes have experienced the greatest fire activity in the western United States, Southern Great Plains, and Florida. Despite over 30 years of increasing fire exposure, fire effects on fresh waters have not been well studied; previous research has generally focused on streams, and most of the limited lake‐fire research has been conducted in boreal landscapes. We therefore propose a conceptual model of how fire may influence the physical, chemical, and biological properties of lake ecosystems by synthesizing the best available science from terrestrial, aquatic, fire, and landscape ecology. This model also highlights emerging research priorities and provides a starting point to help land and lake managers anticipate potential effects of fire on ecosystem services provided by fresh waters and their watersheds.  more » « less
Award ID(s):
1638679 1638554 1638539
PAR ID:
10450065
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Global Change Biology
Volume:
25
Issue:
9
ISSN:
1354-1013
Format(s):
Medium: X Size: p. 2841-2854
Size(s):
p. 2841-2854
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Widespread and increasing use of road deicing salt is a major driver of increasing lake chloride concentrations, which can negatively impact aquatic organisms and ecosystems. We used a simple model to explore the controls on road salt concentrations and predict equilibrium concentrations in lakes across the contiguous United States. The model suggests that equilibrium salt concentration depends on three quantities: salt application rate, road density, and runoff (precipitation minus evapotranspiration). High application combined with high road density leads to high equilibrium salt concentrations regardless of runoff. Yet if application can be held at current rates or reduced, concentrations in many lakes situated in lightly to moderately urbanized watersheds should equilibrate at levels below currently recommended thresholds. In particular, our model predicts that, given 2010–2015 road salt application rates, equilibrium chloride concentrations in the contiguous United States will exceed the current regulatory chronic exposure threshold of 230 mg L−1in over 2000 lakes; will exceed 120 mg L−1in over 9000 lakes; and will be below 120 mg L−1in hundreds of thousands of lakes. Our analysis helps to contextualize current trends in road salt pollution of lakes, and suggests that stabilization of equilibrium chloride concentrations below thresholds designed to protect aquatic organisms should be an achievable goal. 
    more » « less
  2. Abstract Maintaining regional‐scale freshwater connectivity is challenging due to the dendritic, easily fragmented structure of freshwater networks, but is essential for promoting ecological resilience under climate change. Although the importance of stream network connectivity has been recognized, lake‐stream network connectivity has largely been ignored. Furthermore, protected areas are generally not designed to maintain or encompass entire freshwater networks. We applied a coarse‐filter approach to identify potential freshwater corridors for diverse taxa by calculating connectivity scores for 385 lake‐stream networks across the conterminous United States based on network size, structure, resistance to fragmentation, and dam prevalence. We also identified 2080 disproportionately important lakes for maintaining intact networks (i.e., hubs; 2% of all network lakes) and analyzed the protection status of hubs and potential freshwater corridors. Just 3% of networks received high connectivity scores based on their large size and structure (medians of 1303 lakes, 498.6 km north–south stream distance), but these also contained a median of 454 dams. In contrast, undammed networks (17% of networks) were considerably smaller (medians of six lakes, 7.2 km north–south stream distance), indicating that the functional connectivity of the largest potential freshwater corridors in the conterminous United States currently may be diminished compared with smaller, undammed networks. Network lakes and hubs were protected at similar rates nationally across different levels of protection (8%–18% and 6%–20%, respectively), but were generally more protected in the western United States. Our results indicate that conterminous United States protection of major freshwater corridors and the hubs that maintain them generally fell short of the international conservation goal of protecting an ecologically representative, well‐connected set of fresh waters (≥17%) by 2020 (Aichi Target 11). Conservation planning efforts might consider focusing on restoring natural hydrologic connectivity at or near hubs, particularly in larger networks, less protected, or biodiverse regions, to support freshwater biodiversity conservation under climate change. 
    more » « less
  3. Abstract Depth regulates many attributes of aquatic ecosystems, but relatively few lakes are measured, and existing datasets are biased toward large lakes. To address this, we used a large dataset of maximum (Zmax;n = 16,831) and mean (Zmean;n = 5,881) depth observations to create new depth models, focusing on lakes < 1,000 ha. We then used the models to characterize patterns in lake basin shape and volume. We included terrain metrics, water temperature and reflectance, polygon attributes, and other predictors in a random forest model. Our final models generally outperformed existing models (Zmax; root mean square error [RMSE] = 8.0 m andZmean; RMSE = 3.0 m). Our models show that lake depth followed a Pareto distribution, with 2.8 orders of magnitude fewer lakes for an order of magnitude increase in depth. In addition, despite orders of magnitude variation in surface area, most size classes had a modal maximum depth of ~ 5 m. Concave (bowl‐shaped) lake basins represented 79% of all lakes, but lakes were more convex (funnel‐shaped) as surface area increased. Across the conterminous United States, 9.8% of all lake water was within the top meter of the water column, and 48% in the top 10 m. Excluding the Laurentian Great Lakes, we estimate the total volume in the conterminous United States is 1,057–1,294 km3, depending on whetherZmaxorZmeanwas modeled. Lake volume also exhibited substantial geographic variation, with high volumes in the upper Midwest, Northeast, and Florida and low volumes in the southwestern United States. 
    more » « less
  4. Abstract Increasing fire activity and the associated degradation in air quality in the United States has been indirectly linked to human activity via climate change. In addition, direct attribution of fires to human activities may provide opportunities for near term smoke mitigation by focusing policy, management, and funding efforts on particular ignition sources. We analyze how fires associated with human ignitions (agricultural fires and human-initiated wildfires) impact fire particulate matter under 2.5µm (PM2.5) concentrations in the contiguous United States (CONUS) from 2003 to 2018. We find that these agricultural and human-initiated wildfires dominate fire PM2.5in both a high fire and human ignition year (2018) and low fire and human ignition year (2003). Smoke from these human levers also makes meaningful contributions to total PM2.5(∼5%–10% in 2003 and 2018). Across CONUS, these two human ignition processes account for more than 80% of the population-weighted exposure and premature deaths associated with fire PM2.5. These findings indicate that a large portion of the smoke exposure and impacts in CONUS are from fires ignited by human activities with large mitigation potential that could be the focus of future management choices and policymaking. 
    more » « less
  5. Abstract Drought and human land use have increased dust emissions in the western United States. However, the ecological sensitivity of remote lakes to dust deposition is not well understood and to date has largely been assessed through spatial and temporal correlations. Using in situ bioassays, we investigated the effects of dust enrichment on the production, chlorophylla(Chla) concentration, and taxonomic composition of phytoplankton and microbial communities in three western US mountain lakes. We found that dust‐derived nutrients increased Chlaconcentration in all three lakes, but the magnitude of the effect varied from 32% to 226%. This variation was related to pre‐existing lake conditions, such as trophic status, pH, and nutrient limitation. In Castle Lake, co‐limited by N and P, dust bioassays showed an increase in Chlacontent per cell but suppressed primary production and increased dark14C uptake. In contrast, both Flathead Lake and The Loch were primarily P‐limited and exhibited increases in Chlaconcentration. The contrasting Chlaand primary production results from Castle Lake are consistent with the alleviation of nitrogen limitation where energy Adenosine triphosphate (ATP) is used for nutrient assimilation instead of carbon fixation. Dust additions also altered the algal and microbial communities. The latter included the addition of new phyla (e.g.,Deinococcota), indicating that dust‐delivered microbes have the potential to thrive in receiving lakes. Our study provides the first short‐term experimental in situ evidence of rapid ecosystem effects in mountain lakes following dust exposure. The results emphasize the need for continued research in this area to understand interactions of both the short‐ and long‐term consequences of dust‐induced perturbations in remote lakes in the context of global changes. 
    more » « less