We present a versatile one-pot synthesis method for creating surface-anchored orthogonal gradient networks using a small bi-functional gelator, 4-azidosulfonylphenethyltrimethoxysilane (4-ASPTMS). The sulfonyl azide (SAz) group of 4-ASPTMS is UV (≤254 nm) and thermally active (≥100 °C) and, thus, enables us to vary the cross-link density in orthogonal directions by controlling the activation of SAz groups via UV and temperature means. We deposit a thin layer (∼200 nm) of a mixture comprising ∼90% precursor polymer and ∼10% 4-ASPTMS in a silicon wafer. Upon UV irradiation or annealing the layers, SAz releases nitrogen by forming singlet and triplet nitrenes that concurrently react with any C–H bond in the vicinity leading to sulfonamide cross-links. Condensation among trimethoxy groups in the bulk connects 4-ASPTMS units and completes the cross-linking. Simultaneously, 4-ASPTMS near the substrate reacts with surface-bound –OH motifs that anchor the cross-linked polymer chains to the substrate. We demonstrate the generation of orthogonal gradient network coatings exhibiting cross-link density (or stiffness) gradients in orthogonal directions using such a simple process.
more »
« less
UV‐ and Thermally‐Active Bifunctional Gelators Create Surface‐Anchored Polymer Networks
Abstract A versatile one‐step synthesis of surface‐attached polymer networks using small bifunctional gelators (SBG), namely 4‐azidosulfonylphenethyltrimethoxysilane (4‐ASPTMS) and 6‐azidosulfonylhexyltriethoxysilane (6‐ASHTES) is reported. A thin layer (≈200 nm) of a mixture comprising ≈90% precursor polymer and 10% of 4‐ASPTMS or 10% 6‐ASHTES on a silicon wafer is deposited. Upon UV irradiation (≈l–254 nm) or annealing (>100 °C) layers, sulfonyl azides (SAz) release nitrogen by forming singlet and triplet nitrenes that concurrently react with any C─H bond in the vicinity resulting in sulfonamide crosslinks. Condensation among tri‐alkoxy groups (i.e., methoxy or ethoxy) in bulk connects the SBG units, which completes the crosslinking. Concurrently, when such functionalities react with hydroxyl groups at the surface, which enable the covalent attachment of the crosslinked polymer chains. A systematic investigation on reaction mechanism and gel formation using spectroscopic ellipsometry (SE) and Fourier‐transform infrared spectroscopy in the attenuated total reflection mode (FTIR‐ATR) is performed. Analogous thermally initiated gelation for both 4‐ASPTMS and 6‐ASHTES is found. The 6‐ASHTES is UV inactive at ≈l–254 nm, while the 4‐ASPTMS is active and forms gels. The difference is attributed to the aromatic nature of 4‐ASPTMS that absorb UV light at ≈l–254 nm due to π–π*transition.
more »
« less
- Award ID(s):
- 1809453
- PAR ID:
- 10450077
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Macromolecular Rapid Communications
- Volume:
- 42
- Issue:
- 16
- ISSN:
- 1022-1336
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Ultraviolet (UV), visible, and near‐infrared (NIR) broadband organic photodetectors are fabricated by sequential solution‐based thin film coatings of a polymer electron blocking layer (EBL) and a polymer photoactive layer. To avoid damage to a preceding polymer EBL during a subsequent solution‐based film coating of a polymer photoactive layer due to lack of solvent orthogonality, 2‐(((4‐azido‐2,3,5,6‐tetrafluorobenzoyl)oxy)methyl)−2‐ethylpropane‐1,3‐diyl bis(4‐azido‐2,3,5,6‐tetrafluorobenzoate) (FPA‐3F) is used as a novel organic cross‐linking agent activated by UV irradiation with a wavelength of 254 nm. Solution‐processed poly[N,N′‐bis(4‐butylphenyl)‐N,N′‐bis(phenyl)‐benzidine] (poly‐TPD) films, which are cross‐linked with a FPA‐3F photocrosslinker, are used for a preceding polymer EBL. A ternary blend film composed of PTB7‐Th, COi8DFIC, and PC71BM is used as a NIR‐sensitive organic photoactive layer with strong photosensitivity in multispectral (UV–visible–NIR) wavelengths of 300–1,050 nm. Poly‐TPD films are successfully cross‐linked even with a very small amount of 1 wt% FPA‐3F. Small amounts of FPA‐3F have little detrimental effect on the electrical and optoelectronic properties of the cross‐linked poly‐TPD EBL. Finally, organic NIR photodetectors with a poly‐TPD EBL cross‐linked by the small addition of FPA‐3F (1 wt%) show the detectivity values higher than 1 × 1012Jones for the entire UV–visible–NIR wavelengths from 300 nm to 1050 nm, and the maximum detectivity values of 1.41 × 1013Jones and 8.90 × 1012Jones at the NIR wavelengths of 900 and 1000 nm, respectively.more » « less
-
Abstract The discovery of carbon dots opens a new avenue to the applications of nanomaterials in biosensing and bioimaging. In this work, we develop simple methods to prepare carbon nanoparticles from xylose and to tune the photoluminescence (PL) characteristics of the xylose-derived carbon nanoparticles via the combination of three different processes: hydrothermal carbonization (HTC), annealing at 850 °C and laser ablation (LA) in a NH4OH solution. The HTC-synthesized carbon dots (CDs) exhibit green emission under the 365 nm UV excitation, the annealing of the HTC-synthesized CDs leads to complete loss of the PL characteristics, and the LA processing of the annealed carbon nanoparticles recovers the PL characteristics with blue shift in comparison to the HTC-synthesized CDs under the same UV excitation. the PL characteristics of the HTC-CDs and the LA-CDs are dependent on theπ-π* transition of C-containing surface-functional groups andπ-π* and n-π* transitions of N-containing surface-functional groups, respectively, which are responsible for the difference in the PL characteristics between the HTC-synthesized CDs and the LA-processed CDs. The approaches demonstrated in this work provide a viable method to introduce and tune surface-functional groups on the surface of carbon nanoparticles.more » « less
-
A CuIIcoordination polymer,catena-poly[[[aquacopper(II)]-bis(μ-4-aminobenzoato)-κ2N:O;κ2O:N] monohydrate], {[Cu(pABA)2(H2O)]·H2O}n(pABA =p-aminobenzoate, C7H4NO2−), was synthesized and characterized. It exhibits a one-dimensional chain structure extended into a three-dimensional supramolecular assembly through hydrogen bonds and π–π interactions. While the twinned crystal shows a metrically orthorhombic lattice and an apparent space groupPbcm, the true symmetry is monoclinic (space groupP2/c), with disordered Cu atoms and mixed roles of water molecules (aqua ligand/crystallization water). The luminescence spectrum of the complex shows an emission at 345 nm,cf.349 nm forpABAH.more » « less
-
Abstract Understanding psychology is an important task in modern society which helps predict human behavior and provide feedback accordingly. Monitoring of weak psychological and emotional changes requires bioelectronic devices to be stretchable and compliant for unobtrusive and high‐fidelity signal acquisition. Thin conductive polymer film is regarded as an ideal interface; however, it is very challenging to simultaneously balance mechanical robustness and opto‐electrical property. Here, a 40 nm‐thick film based on photolithographic double‐network conductive polymer mediated by graphene layer is reported, which concurrently enables stretchability, conductivity, and conformability. Photolithographic polymer and graphene endow the film photopatternability, enhance stress dissipation capability, as well as improve opto‐electrical conductivity (4458 S cm−1@>90% transparency) through molecular rearrangement by π–π interaction, electrostatic interaction, and hydrogen bonding. The film is further applied onto corrugated facial skin, the subtle electromyogram is monitored, and machine learning algorithm is performed to understand complex emotions, indicating the outstanding ability for stretchable and compliant bioelectronics.more » « less
An official website of the United States government
