For any finite horizon Sinai billiard map \begin{document}$ T $$\end{document} on the two-torus, we find \begin{document}$$ t_*>1 $$\end{document} such that for each \begin{document}$$ t\in (0,t_*) $$\end{document} there exists a unique equilibrium state \begin{document}$$ \mu_t $$\end{document} for \begin{document}$$ - t\log J^uT $$\end{document}, and \begin{document}$$ \mu_t $$\end{document} is \begin{document}$$ T $$\end{document}-adapted. (In particular, the SRB measure is the unique equilibrium state for \begin{document}$$ - \log J^uT $$\end{document}.) We show that \begin{document}$$ \mu_t $$\end{document} is exponentially mixing for Hölder observables, and the pressure function \begin{document}$$ P(t) = \sup_\mu \{h_\mu -\int t\log J^uT d \mu\} $$\end{document} is analytic on \begin{document}$$ (0,t_*) $$\end{document}. In addition, \begin{document}$$ P(t) $$\end{document} is strictly convex if and only if \begin{document}$$ \log J^uT $$\end{document} is not \begin{document}$$ \mu_t $$\end{document}-a.e. cohomologous to a constant, while, if there exist \begin{document}$$ t_a\ne t_b $$\end{document} with \begin{document}$$ \mu_{t_a} = \mu_{t_b} $$\end{document}, then \begin{document}$$ P(t) $$\end{document} is affine on \begin{document}$$ (0,t_*) $$\end{document}. An additional sparse recurrence condition gives \begin{document}$$ \lim_{t\downarrow 0} P(t) = P(0) $$\end{document}$.
more »
« less
Partial inversion of the 2D attenuated $ X $-ray transform with data on an arc
In two dimensions, we consider the problem of inversion of the attenuated \begin{document}$ X $$\end{document}-ray transform of a compactly supported function from data restricted to lines leaning on a given arc. We provide a method to reconstruct the function on the convex hull of this arc. The attenuation is assumed known. The method of proof uses the Hilbert transform associated with \begin{document}$$ A $$\end{document}$-analytic functions in the sense of Bukhgeim.
more »
« less
- Award ID(s):
- 1907097
- PAR ID:
- 10287912
- Date Published:
- Journal Name:
- Inverse Problems & Imaging
- Volume:
- 0
- Issue:
- 0
- ISSN:
- 1930-8345
- Page Range / eLocation ID:
- 0
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In this paper, we propose a new class of operator factorization methods to discretize the integral fractional Laplacian \begin{document}$$ (- \Delta)^\frac{{ \alpha}}{{2}} $$\end{document} for \begin{document}$$ \alpha \in (0, 2) $$\end{document}. One main advantage is that our method can easily increase numerical accuracy by using high-degree Lagrange basis functions, but remain its scheme structure and computer implementation unchanged. Moreover, it results in a symmetric (multilevel) Toeplitz differentiation matrix, enabling efficient computation via the fast Fourier transforms. If constant or linear basis functions are used, our method has an accuracy of \begin{document}$$ {\mathcal O}(h^2) $$\end{document}, while \begin{document}$$ {\mathcal O}(h^4) $$\end{document} for quadratic basis functions with \begin{document}$ h $$\end{document} a small mesh size. This accuracy can be achieved for any \begin{document}$$ \alpha \in (0, 2) $$\end{document} and can be further increased if higher-degree basis functions are chosen. Numerical experiments are provided to approximate the fractional Laplacian and solve the fractional Poisson problems. It shows that if the solution of fractional Poisson problem satisfies \begin{document}$$ u \in C^{m, l}(\bar{ \Omega}) $$\end{document} for \begin{document}$$ m \in {\mathbb N} $$\end{document} and \begin{document}$$ 0 < l < 1 $$\end{document}, our method has an accuracy of \begin{document}$$ {\mathcal O}(h^{\min\{m+l, \, 2\}}) $$\end{document} for constant and linear basis functions, while \begin{document}$$ {\mathcal O}(h^{\min\{m+l, \, 4\}}) $$\end{document}$ for quadratic basis functions. Additionally, our method can be readily applied to approximate the generalized fractional Laplacians with symmetric kernel function, and numerical study on the tempered fractional Poisson problem demonstrates its efficiency.more » « less
-
Realizing arbitrary $$d$$-dimensional dynamics by renormalization of $C^d$-perturbations of identityAny \begin{document}$ C^d $$\end{document} conservative map \begin{document}$$ f $$\end{document} of the \begin{document}$$ d $$\end{document}-dimensional unit ball \begin{document}$$ {\mathbb B}^d $$\end{document}, \begin{document}$$ d\geq 2 $$\end{document}, can be realized by renormalized iteration of a \begin{document}$$ C^d $$\end{document} perturbation of identity: there exists a conservative diffeomorphism of \begin{document}$$ {\mathbb B}^d $$\end{document}, arbitrarily close to identity in the \begin{document}$$ C^d $$\end{document} topology, that has a periodic disc on which the return dynamics after a \begin{document}$$ C^d $$\end{document} change of coordinates is exactly \begin{document}$$ f $$\end{document}$.more » « less
-
Let \begin{document}$$ f_c(z) = z^2+c $$\end{document} for \begin{document}$$ c \in {\mathbb C} $$\end{document}. We show there exists a uniform upper bound on the number of points in \begin{document}$$ {\mathbb P}^1( {\mathbb C}) $$\end{document} that can be preperiodic for both \begin{document}$$ f_{c_1} $$\end{document} and \begin{document}$$ f_{c_2} $$\end{document}, for any pair \begin{document}$$ c_1\not = c_2 $$\end{document} in \begin{document}$$ {\mathbb C} $$\end{document}. The proof combines arithmetic ingredients with complex-analytic: we estimate an adelic energy pairing when the parameters lie in \begin{document}$$ \overline{\mathbb{Q}} $$\end{document}, building on the quantitative arithmetic equidistribution theorem of Favre and Rivera-Letelier, and we use distortion theorems in complex analysis to control the size of the intersection of distinct Julia sets. The proofs are effective, and we provide explicit constants for each of the results.more » « less
-
This paper investigates the global existence of weak solutions for the incompressible \begin{document}$ p $$\end{document}-Navier-Stokes equations in \begin{document}$$ \mathbb{R}^d $$\end{document} \begin{document}$$ (2\leq d\leq p) $$\end{document}. The \begin{document}$$ p $$\end{document}-Navier-Stokes equations are obtained by adding viscosity term to the \begin{document}$$ p $$\end{document}-Euler equations. The diffusion added is represented by the \begin{document}$$ p $$\end{document}-Laplacian of velocity and the \begin{document}$$ p $$\end{document}-Euler equations are derived as the Euler-Lagrange equations for the action represented by the Benamou-Brenier characterization of Wasserstein-\begin{document}$$ p $$\end{document}$ distances with constraint density to be characteristic functions.more » « less
An official website of the United States government

