skip to main content


Title: Linking Geomorphic Process Dominance and the Persistence of Local Elevation
Abstract

The response of eroding topography to changes in base level is driven by patchy and intermittent mass flux, both on hillslopes and in channels. However, most models of soil‐mantled landscape evolution use continuously differentiable equations that average over these patchy transport processes. Because of the limited time and space resolution of field observations, the relationship between zeroth‐order landscape evolution (i.e., over long space and time scales) and first‐order fluctuations due to patchy, intermittent transport (e.g., tree throw and landsliding) remains unclear. Here, we use five physical experiments of an eroding experimental landscape to examine how the signature of first‐order transport, as described by autocorrelation functions of local elevation time series, varies as a function of the vigor of hillslope transport relative to channel incision. Our results show that experiments with higher hillslope transport efficacy have higher autocorrelation coefficients, suggesting that differences in zeroth‐order transport coefficients may be driven by differences in patchy, first‐order transport processes. These higher autocorrelation coefficients also imply that in landscapes where hillslope transport dominates, landscape dynamism is reduced and patterns of elevation change are more persistent over time. These findings suggest that the balance between channelized and hillslope transport processes is fundamental to landscape response to perturbation and may control landscape susceptibility to unsteady processes like large‐scale reorganization.

 
more » « less
NSF-PAR ID:
10450198
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Earth Surface
Volume:
125
Issue:
10
ISSN:
2169-9003
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Landscapes are frequently delineated by nested watersheds and river networks ranked via stream orders. Landscapes have only recently been delineated by their interfluves and ridge networks, and ordered based on their ridge connectivity. There are, however, few studies that have quantitatively investigated the connections between interfluve networks and landscape morphology and environmental processes. Here, we ordered hillsheds using methods complementary to traditional watersheds, via a hierarchical ordering of interfluves, and we defined hillsheds to be landscape surfaces from which soil is shed by soil creep or any type of hillslope transport. With this approach, we demonstrated that hillsheds are most useful for analyses of landscape structure and processes. We ordered interfluve networks at the Calhoun Critical Zone Observatory (CZO), a North American Piedmont landscape, and demonstrated how interfluve networks and associated hillsheds are related to landscape geomorphology and processes of land management and land-use history, accelerated agricultural gully erosion, and bedrock weathering depth (i.e., regolith depth). Interfluve networks were ordered with an approach directly analogous to that first proposed for ordering streams and rivers by Robert Horton in the GSA Bulletin in 1945. At the Calhoun CZO, low-order hillsheds are numerous and dominate most of the observatory’s ∼190 km2 area. Low-order hillsheds are relatively narrow with small individual areas, they have relatively steep slopes with high curvature, and they are relatively low in elevation. In contrast, high-order hillsheds are few, large in individual area, and relatively level at high elevation. Cultivation was historically abandoned by farmers on severely eroding low-order hillsheds, and in fact agriculture continues today only on high-order hillsheds. Low-order hillsheds have an order of magnitude greater intensity of gullying across the Calhoun CZO landscape than high-order hillsheds. In addition, although modeled regolith depth appears to be similar across hillshed orders on average, both maximum modeled regolith depth and spatial depth variability decrease as hillshed order increases. Land management, geomorphology, pedology, and studies of land-use change can benefit from this new approach pairing landscape structure and analyses. 
    more » « less
  2. Abstract

    Hillslope topographic change in response to climate and climate change is a key aspect of landscape evolution. The impact of short‐duration rainstorms on hillslope evolution in arid regions is persistently questioned but often not directly examined in landscape evolution studies, which are commonly based on mean climate proxies. This study focuses on hillslope surface processes responding to rainstorms in the driest regions of Earth. We present a numerical model for arid, rocky hillslopes with lithology of a softer rock layer capped by a cliff‐forming resistant layer. By representing the combined action of bedrock and clast weathering, cliff‐debris ravel, and runoff‐driven erosion, the model can reproduce commonly observed cliff‐profile morphology. Numerical experiments with a fixed base level were used to test hillslope response to cliff‐debris grain size, rainstorm intensities, and alternation between rainstorm patterns. The persistence of vertical cliffs and the pattern of sediment sorting depend on rainstorm intensities and the size of cliff debris. Numerical experiments confirm that these two variables could have driven the landscape in the Negev Desert (Israel) toward an observed spatial contrast in topographic form over the past 105–106 years. For a given total storm rain depth, short‐duration higher‐intensity rainstorms are more erosive, resulting in greater cliff retreat distances relative to longer, low‐intensity storms. Temporal alternation between rainstorm regimes produces hillslope profiles similar to those previously attributed to Quaternary oscillations in the mean climate. We suggest that arid hillslopes may undergo considerable geomorphic transitions solely by alternating intra‐storm patterns regardless of rainfall amounts.

     
    more » « less
  3. Abstract

    The hydrologic dynamics and geomorphic evolution of watersheds are intimately coupled—runoff generation and water storage are controlled by topography and properties of the surface and subsurface, while also affecting the evolution of those properties over geologic time. However, the large disparity between their timescales has made it difficult to examine interdependent controls on emergent hydrogeomorphic properties, such as hillslope length, drainage density, and extent of surface saturation. In this study, we develop a new model coupling hydrology and landscape evolution to explore how runoff generation affects long‐term catchment evolution, and analyze numerical results using a nondimensional scaling framework. We focus on hydrologic processes dominating in humid climates where storm runoff primarily arises from shallow subsurface flow and from precipitation on saturated areas. The model solves hydraulic groundwater equations to predict the water‐table elevation given prescribed, constant groundwater recharge. Water in excess of the subsurface capacity for transport becomes overland flow, which generates shear stress on the surface and may detach and transport sediment. This affects the landscape form that in turn affects runoff generation. We show that (a) four dimensionless parameters describe the possible steady state landscapes that coevolve under steady recharge; (b) hillslope length increases with increasing transmissivity relative to the recharge rate; (c) three topographic metrics—steepness index, Laplacian curvature, and topographic index—together provide a basis for interpreting landscapes that have coevolved with runoff generated via shallow subsurface flow. Finally we discuss the possibilities and limitations for quantitative comparisons between the model results and real landscapes.

     
    more » « less
  4. Assessment of lakes for their future potential to drain relied on the 2002/03 airborne Interferometric Synthetic Aperture Radar (IFSAR) Digital Surface Model (DSM) data for the western Arctic Coastal Plain in northern Alaska. Lakes were extracted from the IfSAR DSM using a slope derivative and manual correction (Jones et al., 2017). The vertical uncertainty for correctly detecting lake-based drainage gradients with the IfSAR DSM was defined by comparing surface elevation differences of several overlapping DSM tile edges. This comparison showed standard deviations of elevation between overlapping IfSAR tiles ranging from 0.0 to 0.6 meters (m). Thus, we chose a minimum height difference of 0.6 m to represent a detectable elevation gradient adjacent to a lake as being most likely to contribute to a rapid drainage event. This value is also in agreement with field verified estimates of the relative vertical accuracy (~0.5 m) of the DSM dataset around Utqiaġvik (formerly Barrow) (Manley et al., 2005) and the stated vertical RMSE (~1.0 m) of the DSM data (Intermap, 2010). Development of the potential lake drainage dataset involved several processing steps. First, lakes were classified as potential future drainage candidates if the difference between the elevation of the lake surface and the lowest elevation within a 100 m buffer of the lake shoreline exceeded our chosen threshold of 0.6 m. Next, we selected lakes with a minimum size of 10 ha to match the historic lake drainage dataset. We further filtered the dataset by selecting lakes estimated to have low hydrological connectivity based on relations between lake contributing area as determined for specific surficial geology types and presented in Jones et al. (2017). This was added to the future projection workflow to isolate the lake population that likely responds to changes in surface area driven largely by geomorphic change as opposed to differences in surface hydrology. Lakes within a basin with low to no hydrologic connectivity that had an elevation change gradient between the lake surface and surrounding landscape are considered likely locations to assess for future drainage potential. Further, the greater the elevation difference, the greater the drainage potential. This dataset provided a first-order estimate of lakes classified as being prone to future drainage. We further refined our assessment of potential drainage lakes by identifying the location of the point with the lowest elevation within the 100 m buffer of the lake shoreline and manually interpreted lakes to have a high drainage potential based on the location of the likely drainage point to known lake drainage pathways using circa 2002 orthophotography or more recent high resolution satellite imagery available for the Western Coastal Arctic Plain (WACP). Lakes classified as having a high drainage potential typically had the likely drainage location associated with one or more of the following: (1) an adjacent lake, (2) the cutbank of a river, (3) the ocean, (4) were located in an area with dense ice-wedge networks, (5) appeared to coincide with a potentially headward eroding stream, or (6) were associated with thermokarst lake shoreline processes in the moderate to high ground ice content terrain. We also added information on potential lake drainage pathways to the high potential drainage dataset by manually interpreting the landform associated with the likely drainage site to draw comparisons with the historic lake drainage dataset. 
    more » « less
  5. null (Ed.)
    Abstract. Landslides are the main source of sediment in most mountain ranges. Rivers then act as conveyor belts, evacuating landslide-derived sediment. Sediment dynamics are known to influence landscape evolution through interactions among landslide sediment delivery, fluvial transport and river incision into bedrock. Sediment delivery and its interaction with river incision therefore control the pace of landscape evolution and mediate relationships among tectonics, climate and erosion. Numerical landscape evolution models (LEMs) are well suited to study the interactions among these surface processes. They enable evaluation of a range of hypotheses at varying temporal and spatial scales. While many models have been used to study the dynamic interplay between tectonics, erosion and climate, the role of interactions between landslide-derived sediment and river incision has received much less attention. Here, we present HyLands, a hybrid landscape evolution model integrated within the TopoToolbox Landscape Evolution Model (TTLEM) framework. The hybrid nature of the model lies in its capacity to simulate both erosion and deposition at any place in the landscape due to fluvial bedrock incision, sediment transport, and rapid, stochastic mass wasting through landsliding. Fluvial sediment transport and bedrock incision are calculated using the recently developed Stream Power with Alluvium Conservation and Entrainment (SPACE) model. Therefore, rivers can dynamically transition from detachment-limited to transport-limited and from bedrock to bedrock–alluvial to fully alluviated states. Erosion and sediment production by landsliding are calculated using a Mohr–Coulomb stability analysis, while landslide-derived sediment is routed and deposited using a multiple-flow-direction, nonlinear deposition method. We describe and evaluate the HyLands 1.0 model using analytical solutions and observations. We first illustrate the functionality of HyLands to capture river dynamics ranging from detachment-limited to transport-limited conditions. Second, we apply the model to a portion of the Namche Barwa massif in eastern Tibet and compare simulated and observed landslide magnitude–frequency and area–volume scaling relationships. Finally, we illustrate the relevance of explicitly simulating landsliding and sediment dynamics over longer timescales for landscape evolution in general and river dynamics in particular. With HyLands we provide a new tool to understand both the long- and short-term coupling between stochastic hillslope processes, river incision and source-to-sink sediment dynamics. 
    more » « less