Abstract While many mechanistic studies have focused on the lubricious properties of ionic liquids (ILs) on ideally smooth surfaces, little is known about the mechanisms by which ILs lubricate contacts with nanoscale roughness. Here, substrates with controlled density of nanoparticles are prepared to examine the influence of nanoscale roughness on the lubrication by 1‐hexyl‐3‐methyl imidazolium bis(trifluoromethylsulfonyl)imide. Atomic force microscopy is employed to investigate adhesion, hydrodynamic slip, and friction at the lubricated contact as a function of surface topography for the first time. This study reveals that nanoscale roughness has a significant influence on the slip along the surface and leads to a maximum slip length on the substrates with intermediate nanoparticle density. This coincides with the minimum friction coefficient at sufficiently small contact stresses, likely due to the lower resistance of the IL film to shear. However, at the higher pressures applied with a sharp tip, friction increases with nanoparticle density, indicating that the IL is not able to alleviate the increased dissipation due to roughness. The results of this work point toward a complex influence of the surface topology on friction. This study can help design ILs and nanopatterned substrates for tribological applications and nano‐ and microfluidics.
more »
« less
Fabrication of Bioinspired Micro/Nano-Textured Surfaces Through Scalable Roll Coating Manufacturing
Abstract Bio-inspired, micro/nanotextured surfaces have a variety of applications including superhydrophobicity, self-cleaning, anti-icing, antibiofouling, and drag reduction. In this paper, a template-free and scalable roll coating process is studied for fabrication of micro/nanoscale topographies surfaces. These micro/nanoscale structures are generated with viscoelastic polymer nanocomposites and derived by controlling ribbing instabilities in forward roll coating. The relationship between process conditions and surface topography is studied in terms of shear rate, capillary number, and surface roughness parameters (e.g., Wenzel factor and the density of peaks). For a given shear rate, the sample roughness increased with a higher capillary number until a threshold point. Similarly, for a given capillary number, the roughness increased up to a threshold range associated with shear rate. A peak density coefficient (PDC) model is proposed to relate capillary number and shear rate to surface roughness. The optimum range of the shear rate and the capillary number was found to be 40–60 s−1 and 4.5 × 105–6 × 105, respectively. This resulted in a maximum Wenzel roughness factor of 1.91, a peak density of 3.94 × 104 (1/mm2), and a water contact angle (WCA) of 128 deg.
more »
« less
- Award ID(s):
- 2031558
- PAR ID:
- 10450394
- Date Published:
- Journal Name:
- Journal of Micro and Nano-Manufacturing
- Volume:
- 10
- Issue:
- 2
- ISSN:
- 2166-0468
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In this paper, electroless nickel plating is explored for the protection of binder-jetting-based additively manufactured (AM) composite materials. Electroless nickel plating was attempted on binder-jetted composites composed of stainless steel and bronze, resulting in differences in the physicochemical properties. We investigated the impact of surface finishing, plating solution chemistry, and plating parameters to attain a wide range of surface morphologies and roughness levels. We employed the Keyence microscope to quantitatively evaluate dramatically different surface properties before and after the coating of AM composites. Scanning electron microscopy revealed a wide range of microstructural properties in relation to each combination of surface finishing and coating parameters. We studied chempolishing, plasma cleaning, and organic cleaning as the surface preparation methods prior to coating. We found that surface preparation dictated the surface roughness. Taguchi statistical analysis was performed to investigate the relative strength of experimental factors and interconnectedness among process parameters to attain optimum coating qualities. The quantitative impacts of phosphorous level, temperature, surface preparation, and time factor on the roughness of the nickel-plated surface were 17.95%, 8.2%, 50.02%, and 13.21%, respectively. On the other hand, the quantitative impacts of phosphorous level, temperature, surface preparation, and time factor on the thickness of nickel plating were 35.12%, 41.40%, 3.87%, and 18.24%, respectively. The optimum combination of the factors’ level projected the lowest roughness of Ra at 7.76 µm. The optimum combination of the factors’ level projected the maximum achievable thickness of ~149 µm. This paper provides insights into coating process for overcoming the sensitivity of AM composites in hazardous application spaces via robust coating.more » « less
-
Surfaces that exhibit both superhydrophobic and superoleophobic properties have recently been demonstrated. Specifically, remarkable designs based on overhanging/inverse-trapezoidal microstructures enable water droplets to contact these surfaces only at the tips of the micro-pillars, in a state known as the Cassie state. However, the Cassie state may transition into the undesirable Wenzel state under certain conditions. Herein, we show from large-scale molecular dynamics simulations that the transition between the Cassie and Wenzel states can be controlled via precisely designed trapezoidal nanostructures on a surface. Both the base angle of the trapezoids and the intrinsic contact angle of the surface can be exploited to control the transition. For a given base angle, three regimes can be achieved: the Wenzel regime, in which water droplets can exist only in the Wenzel state when the intrinsic contact angle is less than a certain critical value; the Cassie regime, in which water droplets can exist only in the Cassie state when the intrinsic contact angle is greater than another critical value; and the bistable Wenzel–Cassie regime, in which both the Wenzel and Cassie states can exist when the intrinsic contact angle is between the two critical values. A strong base-angle dependence of the first critical value is revealed, whereas the second critical value shows much less dependence on the base angle. The stability of the Cassie state for various base angles (and intrinsic contact angles) is quantitatively evaluated by computing the free-energy barrier for the Cassie-to-Wenzel state transition.more » « less
-
Abstract Functionally graded surfaces — surfaces with properties that are engineered to have spatial variations — have numerous applications such as micropumps, auto-mixers, and flow control for lab-on-chip devices. Manufacturing of functionally graded surfaces is an increasingly important topic of research. This study investigates the feasibility of creating a functionally graded surface during channeling of borosilicate glass by the electrochemical discharge machining (ECDM) process. The ability to create surface roughness gradients in microchannels during the machining process was demonstrated by modifying the input voltage, tool feed rate, and tool rotation speed. Microchannels with graded surface roughness having Ra values ranging from 0.35 to 4.07 μm were successfully machined on borosilicate glass by ECDM. Surface profiles were obtained via a stylus profilometer, and roughness values were calculated after detrending and applying a Gaussian filter. To demonstrate the process versatility, micro channels with increasing and decreasing Ra values were machined, one increasing from 1.43 μm to 4.07 μm, another decreasing from 3.29 μm to 1.10 μm. To demonstrate the process repeatability, a micro channel with similar surface roughness on both ends and a lower Ra value in the center was created. In this channel, the Ra value at the start is 0.35 μm, reducing to 0.24 μm, then rising again to 0.38 μm in the final section.more » « less
-
Amorphous silica (a-SiO2) surfaces, when grafted with select metals on the active sites of the functionalized surfaces, can act as useful heterogeneous catalysts. From a molecular modeling perspective, one challenge has been generating a-SiO2 slab models with controllable surface roughness to facilitate the study of the effect of surface morphology on the material properties. Previous computational methods either generate relatively flat surfaces or periodically corrugated surfaces that do not mimic the full range of potential surface roughness of the amorphous silica material. In this work, we present a new method, inspired by the capillary fluctuation theory of interfaces, in which rough silica slabs are generated by cleaving a bulk amorphous sample using a cleaving plane with Fourier components randomly generated from a Gaussian distribution. The width of this Gaussian distribution (and thus the degree of surface roughness) can be tuned by varying the surface roughness parameter α. Using the van Beest, Kramer, and van Santen (BKS) force field, we create a large number of silica slabs using cleaving surfaces of varying roughness (α) and using two different system sizes. These surfaces are then characterized to determine their roughness (mean- squared displacement), density profile, and ring size distribution. This analysis shows a higher concentration of surface defects (under-/overcoordinated atoms and strained rings) as the surface roughness increases. To examine the effect of the roughness on surface reactivity, we re-equilibriate a subset of these slabs using the reactive force field ReaxFF and then expose the slabs to water and observe the formation of surface silanols. We observe that the rougher surfaces exhibit greater silanol concentrations as well as bimodal acidity.more » « less
An official website of the United States government

