ABSTRACT: This paper explores the use of cyber-physical systems (CPS) for optimal design in wind engineering. The approach combines the accuracy of physical wind tunnel testing with the ability to efficiently explore a solution space using numerical optimization algorithms. The approach is fully automated, with experiments executed in a boundary layer wind tunnel (BLWT), sensor feedback monitored by a high-performance computer, and actuators used to bring about physical changes in the BLWT. Because the model is undergoing physical change as it approaches the optimal solution, this approach is given the name “loop-in-the-model” testing. The building selected for this study is a low-rise structure with a parapet wall of variable height. Parapet walls alter the location of the roof corner vortices, alleviating large suction loads on the windward facing roof corner and edges and setting up an interesting optimal design problem. In the BLWT, the model parapet height is adjusted using servo-motors to achieve a particular design. The model surface is instrumented with pressure taps to measure the envelope pressure loading. The taps are densely spaced on the roof to provide sufficient resolution to capture the change in roof corner vortex formation. Experiments are conducted using a boundary BLWT located at the University of Florida Natural Hazard Engineering Research Infrastructure (NHERI) Experimental Facility. The proposed CPS approach enables the optimal solution to be found quicker than brute force methods, in particular for complex structures with many design variables. The parapet wall provides a proof-of-concept study with a single design variable that has a non-monotonic influence on a structure’s wind load. This study focuses on envelope load effects, seeking the parapet height that minimizes roof and parapet wall suction loading. Implications are significant for more complex structures where the optimal solution may not be obvious and cannot be reasonably determined with traditional experimental or computational methods. KEYWORDS: Cyber-physical systems, optimization, boundary-layer wind tunnel, parapet wall, NHERI
more »
« less
Active learning applied to automated physical systems increases the rate of discovery
Abstract Active machine learning is widely used in computational studies where repeated numerical simulations can be conducted on high performance computers without human intervention. But translation of these active learning methods to physical systems has proven more difficult and the accelerated pace of discoveries aided by these methods remains as yet unrealized. Through the presentation of a general active learning framework and its application to large-scale boundary layer wind tunnel experiments, we demonstrate that the active learning framework used so successfully in computational studies is directly applicable to the investigation of physical experimental systems and the corresponding improvements in the rate of discovery can be transformative. We specifically show that, for our wind tunnel experiments, we are able to achieve in approximately 300 experiments a learning objective that would be impossible using traditional methods.
more »
« less
- PAR ID:
- 10450430
- Publisher / Repository:
- Nature Portfolio
- Date Published:
- Journal Name:
- Scientific Reports
- Volume:
- 13
- Issue:
- 1
- ISSN:
- 2045-2322
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Boundary Layer Wind Tunnel (BLWT) facilities are commonly used for assessing wind loads on structures. Although BLWT facilities routinely match 1st and 2nd-order wind profile models, evidence suggests that turbulence in the roughness sublayer and the inertial sublayer exhibit non-Gaussian higher-order properties. These non-Gaussian properties can influence peak wind pressures, which govern certain structural limit states and play an important role in design. In the first part of this project, Machine learning (ML) methods are employed to identify relationships between roughness element configurations and higher-order statistical properties of the wind field. A semi-automated framework with an active learning portion and a wind tunnel experimental procedure is developed. The learning framework adaptively selects roughness profiles and launches new experiments to identify differing profiles with second-order equivalent flow as quantified by turbulence intensity. The premise is that second-order equivalent wind fields can differ in higher-order properties and therefore extreme value derived peak loads may differ. Over the course of this project, the turbulence profiles from hundreds of different Terraformer roughness element configurations were collected, providing a very rich dataset of boundary layer flow as a function of upwind fetch. Experiment 1 provides the metadata to describe and interpret measured wind profiles at the UFBLWT for a data set collected for the Benchmark experiments and 3 different phases: 1) Sinusoidal waves experiments, 2) Shape study experiments and, 3) Random field experiments. Experiment 2 of this dataset presents the results of experiments conducted in the UFBLWT, with a focus on measuring turbulence characteristics and pressure coefficients on a bluff body under varying terrain roughness configurations. The dataset provides valuable insights into the influence of upwind fetch and surface roughness on wind-induced forces, contributing to improved modeling and prediction of wind loads on structures. Based on the Terraformer configurations in experiment 1, select configurations (Benchmark and Phase 1 Terraformer configurations only) were chosen for bluff body experiments, along with additional approach turbulence measurements at a lateral location to the model. This dataset includes three key components for Benchmark and Phase 1 Terraformer configurations: reference wind velocity (uRef), lateral approach flow profiles (LatFlow), and pressure coefficients (Cpdata) on the bluff body.more » « less
-
This paper reviews the state-of-the-art and –practice on various methodologies developed to control the wind-induced vibration of tall buildings. Tall buildings experience wind-induced vibration in the along- and across-wind directions depending on the wind direction, building shape, height, and structural properties. It is possible to control the wind response of buildings through passive, active, and semi-active systems. Damping systems, which are widely used to reduce the structural vibrations, are reviewed, and their performance in alleviating the building vibration is discussed. It was found that the application of conventional dampers needs to be reassessed to ensure their efficiency in dissipating the energy, especially caused by wind loads. Specific attention has been given to the aerodynamic modification of building shapes considering their effectiveness and high popularity within the wind engineering community. A comprehensive review of the existing wind tunnel experiment and Computational Fluid Dynamics (CFD) studies are conducted here to present the past and recent achievements on the response mitigation of tall buildings. A comparative study on the performance of different systems has been provided that can provide a commencing point for future studies. The existing challenges and their solutions are explained, and suggestions for future studies are proposed. It is expected that the information provided in this paper will facilitate further research in the area of wind-induced vibration mitigation approaches of tall buildings.more » « less
-
Optimal design in wind engineering using cyber-physical systems and non-stochastic search algorithmsThis paper explores a cyber-physical systems (CPS) approach to optimize the design of rigid, low-rise structures subjected to wind loading. The approach combines the accuracy of physical wind tunnel testing with the ability to efficiently explore a solution space using numerical optimization algorithms. The approach is fully automated, with experiments executed in a boundary layer wind tunnel (BLWT), sensor feedback monitored by a computer, and actuators used to generate physical changes to a mechatronic structural model. The approach was demonstrated for a low-rise structure with a parapet wall of variable height. A non-stochastic optimization algorithm was implemented to search along the domain of parapet heights to minimize both positive and negative pressures on the roof a of a 1:18 length scale low-rise building model. Experiments were conducted at the University of Florida Experimental Facility (UFEF) of the National Science Foundation’s (NSF) Natural Hazard Engineering Research Infrastructure (NHERI) program.more » « less
-
Controlling wind-induced responses is a challenging and fundamental step in the design of wind-sensitive critical infrastructures (CI). While passive design modifications and passive control devices are effective alternatives to a certain extent, further actions are required to fulfill design specifications under some demanding circumstances. Active countermeasures, such as active dampers, active aerodynamic devices, and operational control systems, stand out as a smart alternative that allows extra control over wind-induced responses of tall buildings, long-span bridges, wind turbines, and solar trackers. To make this possible, CI are equipped with operational technology (OT) and cyber–physical systems (CPS). However, as with any other OT/CPS, these systems can be threatened by cyberattacks. Changing their intended use could result in severe structural damage or even the eventual collapse of the structure. This study analyzes the potential consequences of cyberattacks against wind-sensitive structures equipped with OT/CPS based on case studies reported in the structural control literature. Several cyberattacks, scenarios, and possible defenses, including cyber-secure aero-structural design methods, are discussed. Furthermore, we conceptually introduce and analyze a new cyberattack, the ‘‘Wind-Leveraged False Data Injection’’ (WindFDI), that can be specifically developed by taking advantage of the positive feedback between wind loads and the misuse of active control systems.more » « less
An official website of the United States government

