skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A strategy for 2D MXenes as thermal management materials by laser shock nanoshaping
Abstract The two-dimensional (2D) titanium carbides ( T i n + 1 C n ) belong to the MXene family, with carbon and titanium alternating in a flake structure, and are emerging options for nanoelectronics applications. In this study, the feasibility of nanoshaping of 2D titanium carbides for tunable thermal management materials was investigated. 2D titanium carbides demonstrate high degrees of formability on nanoscale and efficiency as thermal management systems in nanoelectronics components. The thermal conductivity of various MXene 2D flakes was studied using molecular dynamics simulations. A robust thermal management behavior has been predicted for 2D MXenes after nanoshaping on various nanomold patterns, which will facilitate the development of MXene-based metamaterials for thermal management in electric nanocomponents. The size dependence analysis shows that the MXenes thermal conductivity is highly influenced by the flake size leading to a variation in experimental values due to scale factors. Our model showed that Ti 2 C is more sensible to strain at both supported and suspended conditions, while the thicker MXenes are not too influenced by strain. When supported, the thermal conductivities of all simulated MXenes considerably decrease due to Z phonon modes suppression. Bending strain also showed an effect in the MXenes thermal conductivity by scattering phonon modes. This makes MXenes an attractive option for the management of thermal fields.  more » « less
Award ID(s):
2228841
PAR ID:
10450558
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Journal of Physics: Materials
Volume:
6
Issue:
4
ISSN:
2515-7639
Page Range / eLocation ID:
045005
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Polyvinylidene fluoride (PVDF) is a semicrystalline polymer used in thin‐film dielectric capacitors because of its inherently high dielectric constant and low loss tangent. Its dielectric constant can be increased by the formation and alignment of its β‐phase crystalline structure, which can be facilitated by 2D nanofillers. 2D carbides and nitrides, MXenes, are promising candidates due to their notable dielectric permittivity and ability to increase interfacial polarization. Still, their mixing is challenging due to weak interfacial interactions and poor dispersibility of MXenes in PVDF. This work explores a novel method for delaminating Ti3C2TxMXene directly into organic solvents while maintaining flake size and quality, as well as the use of a non‐solvent‐induced phase separation method for producing both dense and porous PVDF‐MXene composite films. A deeper understanding of dielectric behavior in these composites is reached by examining MXenes with both mixed and pure chlorine terminations in PVDF matrices. Thin‐film capacitors fabricated from these composites display ultrahigh discharge energy density, exceeding 45 J cm−3with 95% efficiency. The PVDF‐MXene composites are also processed using a green and sustainable solvent, propylene carbonate. 
    more » « less
  2. Abstract MXenes are atomically layered carbides and nitrides of transition metals that have potential for micro-devices applications in energy storage, conversion, and transport. This emerging family of materials is typically studied as nanosheets or ultra-thin films, for which the internal defects are mostly nanoscale flake-flake interface separation type. However, micro-devices applications would require thicker films, which exhibit very high density of microscale pores. Electrical conductivity of thicker MXenes is significantly lower than nanosheets, and the physics of defect size and density control are also different and less understood. Current art is to perform high temperature annealing to improve the electrical conductivity, which can structurally alter or degrade MXene. The key contribution of this study is a room-temperature annealing process that exploits the synergy between electrical pulses and compressive mechanical loading. Experimental results indicate over a 90% increase in electrical conductivity, which reflects a decrease in void size and density. In the absence of compressive loading, the same process resulted in a conductivity increase of approximately 75%. Analytical spectroscopy and microscopy indicated that the proposed multi-stimuli process kept the MXene composition intact while significantly decreasing the void size and density. 
    more » « less
  3. MXenes are a rapidly growing class of 2D transition metal carbides and nitrides, finding applications in fields ranging from energy storage to electromagnetic interference shielding and transparent conductive coatings. However, while more than 20 carbide MXenes have already been synthesized, Ti 4 N 3 and Ti 2 N are the only nitride MXenes reported so far. Here by ammoniation of Mo 2 CT x and V 2 CT x MXenes at 600 °C, we report on their transformation to 2D metal nitrides. Carbon atoms in the precursor MXenes are replaced with N atoms, resulting from the decomposition of ammonia molecules. The crystal structures of the resulting Mo 2 N and V 2 N were determined with transmission electron microscopy and X-ray pair distribution function analysis. Our results indicate that Mo 2 N retains the MXene structure and V 2 C transforms to a mixed layered structure of trigonal V 2 N and cubic VN. Temperature-dependent resistivity measurements of the nitrides reveal that they exhibit metallic conductivity, as opposed to semiconductor-like behavior of their parent carbides. As important, room-temperature electrical conductivity values of Mo 2 N and V 2 N are three and one order of magnitude larger than those of the Mo 2 CT x and V 2 CT x precursors, respectively. This study shows how gas treatment synthesis such as ammoniation can transform carbide MXenes into 2D nitrides with higher electrical conductivities and metallic behavior, opening a new avenue in 2D materials synthesis. 
    more » « less
  4. Two-dimensional (2D) transition metal carbides and nitrides, commonly known as MXenes, are a class of 2D materials with high free carrier densities, making them highly attractive candidates for plasmonic 2D materials. In this study, we use multiphoton photoemission electron microscopy (nP-PEEM) to directly image the plasmonic near fields of multilayers of the prototypical MXene, Ti3C2Tx, with mixed surface terminations (Tx = F, O, and OH). Photon-energy dependentnP-PEEM reveals a dispersive surface plasmon polariton between 1.4 and 1.9 electron volts on MXene flakes thicker than 30 nanometers and waveguide modes above 1.9 electron volts. Combining experiments with finite-difference time-domain simulations, we reveal the emergence of a visible surface plasmon polariton in MXenes, opening avenues for exploration of polaritonic phenomena in MXenes in the visible portion of the electromagnetic spectrum. 
    more » « less
  5. Abstract MXenes, a family of 2D transition‐metal carbides and nitrides, have excellent electrical conductivity and unique optical properties. However, MXenes oxidize in ambient conditions, which is accelerated upon heating. Intercalation of water also causes hydrolysis accelerating oxidation. Developing new tools to readily characterize MXenes’ thermal stability can enable deeper insights into their structure–property relationships. Here, in situ spectroscopic ellipsometry (SE) is employed to characterize the optical properties of three types of MXenes (Ti3C2Tx, Mo2TiC2Tx, and Ti2CTx) with varied composition and atomistic structures to investigate their thermal degradation upon heating under ambient environment. It is demonstrated that changes in MXene extinction and optical conductivity in the visible and near‐IR regions correlate well with the amount of intercalated water and hydroxyl termination groups and the degree of oxidation, measured using thermogravimetric analysis. Among the three MXenes, Ti3C2Txand Ti2CTx, respectively, have the highest and lowest thermal stability, indicating the role of transition‐metal type, synthesis route, and the number of atomic layers in MXene flakes. These findings demonstrate the utility of SE as a powerful in situ technique for rapid structure–property relationship studies paving the way for the further design, fabrication, and property optimization of novel MXene materials. 
    more » « less