skip to main content


Title: On some extended mixed integer optimization models of the Eisenberg–Noe model in systemic risk management
Abstract

The Eisenberg and Noe (EN) model has been widely adopted in the systemic risk management for financial networks. In this paper, we propose a unified EN (U‐EN) model, which incorporates both liquidation and bankruptcy costs. We show that the U‐EN model is polynomial‐time solvable and develop an efficient greedy algorithm to solve it. Then we consider identifying the optimal bailout strategy based on stress testing background and propose a binary EN model with bailout budget constraint (B‐EN‐B). The B‐EN‐B model is shown to be NP‐hard. We present analysis on the parameter selection and design some preprocessing procedures correspondingly. A sequential coefficient strengthening algorithm is designed to solve the B‐EN‐B model. Global convergence of the algorithm is established. Moreover, we show that the systemic risk level obtained from the B‐EN‐B model can be used as a precaution for the social planner. Experiments based on both simulated data and data from the Chinese listed banks' network are reported to demonstrate the efficiency of the proposed algorithms.

 
more » « less
NSF-PAR ID:
10450966
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
International Transactions in Operational Research
Volume:
28
Issue:
6
ISSN:
0969-6016
Page Range / eLocation ID:
p. 3014-3037
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Data-driven machine learning has become ubiquitous. A marketplace for machine learning models connects data owners and model buyers, and can dramatically facilitate data-driven machine learning applications. In this paper, we take a formal data marketplace perspective and propose the first en D -to-end mod e l m a rketp l ace with diff e rential p r ivacy ( Dealer ) towards answering the following questions: How to formulate data owners' compensation functions and model buyers' price functions? How can the broker determine prices for a set of models to maximize the revenue with arbitrage-free guarantee, and train a set of models with maximum Shapley coverage given a manufacturing budget to remain competitive ? For the former, we propose compensation function for each data owner based on Shapley value and privacy sensitivity, and price function for each model buyer based on Shapley coverage sensitivity and noise sensitivity. Both privacy sensitivity and noise sensitivity are measured by the level of differential privacy. For the latter, we formulate two optimization problems for model pricing and model training, and propose efficient dynamic programming algorithms. Experiment results on the real chess dataset and synthetic datasets justify the design of Dealer and verify the efficiency and effectiveness of the proposed algorithms. 
    more » « less
  2. Abstract We analyze the systemic risk for disjoint and overlapping groups of financial institutions by proposing new models with realistic game features.Specifically, we generalize the systemic risk measure proposed in[F. Biagini, J.-P. Fouque, M. Frittelli and T. Meyer-Brandis, On fairness of systemic risk measures, Finance Stoch. 24 (2020), 2, 513–564]by allowing individual banks to choose their preferred groups instead of being assigned to certain groups.We introduce the concept of Nash equilibrium for these new models, and analyze the optimal solution under Gaussian distribution of the risk factor.We also provide an explicit solution for the risk allocation of the individual banks and study the existence and uniqueness of Nash equilibrium both theoretically and numerically.The developed numerical algorithm can simulate scenarios of equilibrium, and we apply it to study the banking structure with real data and show the validity of the proposed model. 
    more » « less
  3. There has been a growing interest in incorporating auxiliary summary information from external studies into the analysis of internal individual‐level data. In this paper, we propose an adaptive estimation procedure for an additive risk model to integrate auxiliary subgroup survival information via a penalized method of moments technique. Our approach can accommodate information from heterogeneous data. Parameters to quantify the magnitude of potential incomparability between internal data and external auxiliary information are introduced in our framework while nonzero components of these parameters suggest a violation of the homogeneity assumption. We further develop an efficient computational algorithm to solve the numerical optimization problem by profiling out the nuisance parameters. In an asymptotic sense, our method can be as efficient as if all the incomparable auxiliary information is accurately acknowledged and has been automatically excluded from consideration. The asymptotic normality of the proposed estimator of the regression coefficients is established, with an explicit formula for the asymptotic variance‐covariance matrix that can be consistently estimated from the data. Simulation studies show that the proposed method yields a substantial gain in statistical efficiency over the conventional method using the internal data only, and reduces estimation biases when the given auxiliary survival information is incomparable. We illustrate the proposed method with a lung cancer survival study.

     
    more » « less
  4. Abstract

    Radiative transfer (RT) is a crucial but computationally expensive process in numerical weather/climate prediction. We develop neural networks (NN) to emulate a common RT parameterization called the Rapid Radiative Transfer Model (RRTM), with the goal of creating a faster parameterization for the Global Forecast System (GFS) v16. In previous work we emulated a highly simplified version of the shortwave RRTM only—excluding many predictor variables, driven by Rapid Refresh forecasts interpolated to a consistent height grid, using only 30 sites in the Northern Hemisphere. In this work we emulate the full shortwave and longwave RRTM—with all predictor variables, driven by GFSv16 forecasts on the native pressure–sigma grid, using data from around the globe. We experiment with NNs of widely varying complexity, including the U-net++ and U-net3+ architectures and deeply supervised training, designed to ensure realistic and accurate structure in gridded predictions. We evaluate the optimal shortwave NN and optimal longwave NN in great detail—as a function of geographic location, cloud regime, and other weather types. Both NNs produce extremely reliable heating rates and fluxes. The shortwave NN has an overall RMSE/MAE/bias of 0.14/0.08/−0.002 K day−1for heating rate and 6.3/4.3/−0.1 W m−2for net flux. Analogous numbers for the longwave NN are 0.22/0.12/−0.0006 K day−1and 1.07/0.76/+0.01 W m−2. Both NNs perform well in nearly all situations, and the shortwave (longwave) NN is 7510 (90) times faster than the RRTM. Both will soon be tested online in the GFSv16.

    Significance Statement

    Radiative transfer is an important process for weather and climate. Accurate radiative transfer models exist, such as the RRTM, but these models are computationally slow. We develop neural networks (NNs), a type of machine learning model that is often computationally fast after training, to mimic the RRTM. We wish to accelerate the RRTM by orders of magnitude without sacrificing much accuracy. We drive both the NNs and RRTM with data from the GFSv16, an operational weather model, using locations around the globe during all seasons. We show that the NNs are highly accurate and much faster than the RRTM, which suggests that the NNs could be used to solve radiative transfer inside the GFSv16.

     
    more » « less
  5. Abstract

    The negative impact of climate change continues to escalate flood risk. Floods directly and indirectly damage highway systems and disturb the socioeconomic order. In this study, we propose an integrated approach to quantitatively assess how floods impact the functioning of a highway system. The approach has three parts: (1) a multi‐agent simulation model to represent traffic, heterogeneous user demand, and route choice in a highway network; (2) a flood simulator using future runoff scenarios generated from five global climate models, three representative concentration pathways (RCPs), and the CaMa‐Flood model; and (3) an impact analyzer, which superimposes the simulated floods on the highway traffic simulation system, and quantifies the flood impact on a highway system based on car following model. This approach is illustrated with a case study of the Chinese highway network. The results show that (i) for different global climate models, the associated flood damage to a highway system is not linearly correlated with the forcing levels of RCPs, or with future years; (ii) floods in different years have variable impacts on regional connectivity; and (iii) extreme flood impacts can cause huge damages in highway networks; that is, in 2030, the estimated 84.5% of routes between provinces cannot be completed when the highway system is disturbed by a future major flood. These results have critical implications for transport sector policies and can be used to guide highway design and infrastructure protection. The approach can be extended to analyze other networks with spatial vulnerability, and it is an effective quantitative tool for reducing systemic disaster risk.

     
    more » « less