skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Systemic risk models for disjoint and overlapping groups with equilibrium strategies
Abstract We analyze the systemic risk for disjoint and overlapping groups of financial institutions by proposing new models with realistic game features.Specifically, we generalize the systemic risk measure proposed in[F. Biagini, J.-P. Fouque, M. Frittelli and T. Meyer-Brandis, On fairness of systemic risk measures, Finance Stoch. 24 (2020), 2, 513–564]by allowing individual banks to choose their preferred groups instead of being assigned to certain groups.We introduce the concept of Nash equilibrium for these new models, and analyze the optimal solution under Gaussian distribution of the risk factor.We also provide an explicit solution for the risk allocation of the individual banks and study the existence and uniqueness of Nash equilibrium both theoretically and numerically.The developed numerical algorithm can simulate scenarios of equilibrium, and we apply it to study the banking structure with real data and show the validity of the proposed model.  more » « less
Award ID(s):
2008427 1953035
PAR ID:
10428974
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Statistics & Risk Modeling
Volume:
40
Issue:
1-2
ISSN:
2193-1402
Page Range / eLocation ID:
21 to 51
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper investigates the dynamics of systemic risk in banking networks by analyzing equilibrium points and stability conditions. The focus is on a model that incorporates interactions among distressed and undistressed banks. The equilibrium points are determined by solving a reduced system of equations, considering both homogeneous and heterogeneous scenarios. Local and global stability analyses reveal conditions under which equilibrium points are stable or unstable. Numerical simulations further illustrate the dynamics of systemic risk, while the theoretical findings offer insights into the behavior of distressed banks under varying conditions. Overall, the model enhances our understanding of systemic financial risk and offers valuable insights for risk management and policymaking in the banking sector. 
    more » « less
  2. Stochastic differential games have been used extensively to model agents' competitions in finance, for instance, in P2P lending platforms from the Fintech industry, the banking system for systemic risk, and insurance markets. The recently proposed machine learning algorithm, deep fictitious play, provides a novel and efficient tool for finding Markovian Nash equilibrium of large \begin{document}$ N $$\end{document}-player asymmetric stochastic differential games [J. Han and R. Hu, Mathematical and Scientific Machine Learning Conference, pages 221-245, PMLR, 2020]. By incorporating the idea of fictitious play, the algorithm decouples the game into \begin{document}$$ N $$\end{document} sub-optimization problems, and identifies each player's optimal strategy with the deep backward stochastic differential equation (BSDE) method parallelly and repeatedly. In this paper, we prove the convergence of deep fictitious play (DFP) to the true Nash equilibrium. We can also show that the strategy based on DFP forms an \begin{document}$$ \epsilon $$\end{document}$-Nash equilibrium. We generalize the algorithm by proposing a new approach to decouple the games, and present numerical results of large population games showing the empirical convergence of the algorithm beyond the technical assumptions in the theorems. 
    more » « less
  3. null (Ed.)
    We propose a deep neural network-based algorithm to identify the Markovian Nash equilibrium of general large 𝑁-player stochastic differential games. Following the idea of fictitious play, we recast the 𝑁-player game into 𝑁 decoupled decision problems (one for each player) and solve them iteratively. The individual decision problem is characterized by a semilinear Hamilton-Jacobi-Bellman equation, to solve which we employ the recently developed deep BSDE method. The resulted algorithm can solve large 𝑁-player games for which conventional numerical methods would suffer from the curse of dimensionality. Multiple numerical examples involving identical or heterogeneous agents, with risk-neutral or risk-sensitive objectives, are tested to validate the accuracy of the proposed algorithm in large group games. Even for a fifty-player game with the presence of common noise, the proposed algorithm still finds the approximate Nash equilibrium accurately, which, to our best knowledge, is difficult to achieve by other numerical algorithms. 
    more » « less
  4. In 1950, Nash proposed a natural equilibrium solution concept for games hence called Nash equilibrium, and proved that all finite games have at least one. The proof is through a simple yet ingenious application of Brouwer’s (or, in another version Kakutani’s) fixed point theorem, the most sophisticated result in his era’s topology—in fact, recent algorithmic work has established that Nash equilibria are computationally equivalent to fixed points. In this paper, we propose a new class of universal non-equilibrium solution concepts arising from an important theorem in the topology of dynamical systems that was unavailable to Nash. This approach starts with both a game and a learning dynamics, defined over mixed strategies. The Nash equilibria are fixpoints of the dynamics, but the system behavior is captured by an object far more general than the Nash equilibrium that is known in dynamical systems theory as chain recurrent set. Informally, once we focus on this solution concept—this notion of “the outcome of the game”—every game behaves like a potential game with the dynamics converging to these states. In other words, unlike Nash equilibria, this solution concept is algorithmic in the sense that it has a constructive proof of existence. We characterize this solution for simple benchmark games under replicator dynamics, arguably the best known evolutionary dynamics in game theory. For (weighted) potential games, the new concept coincides with the fixpoints/equilibria of the dynamics. However, in (variants of) zero-sum games with fully mixed (i.e., interior) Nash equilibria, it covers the whole state space, as the dynamics satisfy specific information theoretic constants of motion. We discuss numerous novel computational, as well as structural, combinatorial questions raised by this chain recurrence conception of games. 
    more » « less
  5. A central goal in the long literature on fair division is the design of mechanisms that implement fair outcomes, despite the participants’ strategic behavior. We study this question by measuring the fairness of an allocation using the geometric mean of the agents’ values, known as the Nash social welfare (NSW). This objective is maximized by widely known concepts such as the Nash bargaining solution, proportional fairness, and the competitive equilibrium with equal incomes; we focus on (approximately) implementing this objective and analyze the Trading Post mechanism. We consider allocating goods that are substitutes or complements and show that this mechanism achieves an approximation of two for concave utility functions and becomes essentially optimal for complements, where it can reach [Formula: see text] for any [Formula: see text]. Moreover, we show that the Nash equilibria of this mechanism are pure and provide individual fairness in the sense of proportionality. 
    more » « less