skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Geometrically exact hybrid beam element based on nonlinear programming
Abstract This work presents a hybrid shear‐flexible beam‐element, capable of capturing arbitrarily large inelastic displacements and rotations of planar frame structures with just one element per member. Following Reissner's geometrically exact theory, the finite element problem is herein formulated within nonlinear programming principles, where the total potential energy is treated as the objective function and the exact strain‐displacement relations are imposed as kinematic constraints. The approximation of integral expressions is conducted by an appropriate quadrature, and by introducing Lagrange multipliers, the Lagrangian of the minimization program is formed and solutions are sought based on the satisfaction of necessary optimality conditions. In addition to displacement degrees of freedom at the two element edge nodes, strain measures of the centroid act as unknown variables at the quadrature points, while only the curvature field is interpolated, to enforce compatibility throughout the element. Inelastic calculations are carried out by numerical integration of the material stress‐strain law at the cross‐section level. The locking‐free behavior of the element is presented and discussed, and its overall performance is demonstrated on a set of well‐known numerical examples. Results are compared with analytical solutions, where available, and outcomes based on flexibility‐based beam elements and quadrilateral elements, verifying the efficiency of the formulation.  more » « less
Award ID(s):
1634575
PAR ID:
10451082
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
International Journal for Numerical Methods in Engineering
Volume:
122
Issue:
13
ISSN:
0029-5981
Page Range / eLocation ID:
p. 3273-3299
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We develop a multipoint stress mixed finite element method for linear elasticity with weak stress symmetry on quadrilateral grids, which can be reduced to a symmetric and positive definite cell centered system. The method utilizes the lowest order Brezzi–Douglas–Marini finite element spaces for the stress and the trapezoidal quadrature rule in order to localize the interaction of degrees of freedom, which allows for local stress elimination around each vertex. We develop two variants of the method. The first uses a piecewise constant rotation and results in a cell‐centered system for displacement and rotation. The second uses a continuous piecewise bilinear rotation and trapezoidal quadrature rule for the asymmetry bilinear form. This allows for further elimination of the rotation, resulting in a cell‐centered system for the displacement only. Stability and error analysis is performed for both methods. First‐order convergence is established for all variables in their natural norms. A duality argument is employed to prove second order superconvergence of the displacement at the cell centers. Numerical results are presented in confirmation of the theory. 
    more » « less
  2. null (Ed.)
    Higher order finite element (FE) methods provide significant advantages in a number of applications such as wave propagation, where high order shape functions help to mitigate pollution (dispersion) error. However, classical assembly of higher order systems is computationally burdensome, requiring the evaluation of many point quadrature schemes. When the Discontinuous Petrov-Galerkin (DPG) FE methodology is employed, the use of an enriched test space further increases the computational burden of system assembly, increasing the relevance of improved assembly techniques. Sum factorization—a technique that exploits the tensorproduct structure of shape functions to accelerate numerical integration—was proposed in Ref. [10] for the assembly of DPG matrices on hexahedral elements that reduced the computational complexity from order (p9) to (p7) (where p denotes polynomial order). In this work we extend the concept of sum factorization to the construction of DPG matrices on prismatic elements by expressing prism shape functions as tensor products of 2D simplex and 1D interval shape functions. Unexpectedly, the resulting sum factorization routines on partially-tensorized prism shape functions achieve the same (p7) complexity as sum factorization on fully-tensorized hexahedra shape functions (as products of 1D interval shape functions) presented in Ref. [10]. Throughout this work we adhere to the theory of exact sequence energy spaces, proposing sum factorization routines for each of the 3D FE exact sequence energy spaces—H1, H(curl), H(div), and L2. Computational results for construction of the DPG Gram matrix on a prismatic element in each exact sequence energy space are presented, corroborating the expected (p7) complexity. Additionally, construction of the DPG system for an ultraweak Maxwell problem on a prismatic element is considered and a partially-tensorized sum factorization for hexahedral elements is proposed to improve implementational compatibility between hexahedral and prismatic elements. 
    more » « less
  3. We present a virtual element method (VEM)-based topology optimization framework using polyhedral elements, which allows for convenient handling of non-Cartesian design domains in three dimensions. We take full advantage of the VEM properties by creating a unified approach in which the VEM is employed in both the structural and the optimization phases. In the structural problem, the VEM is adopted to solve the three-dimensional elasticity equation. Compared to the finite element method, the VEM does not require numerical integration (when linear elements are used) and is less sensitive to degenerated elements (e.g., ones with skinny faces or small edges). In the optimization problem, we introduce a continuous approximation of material densities using the VEM basis functions. When compared to the standard element-wise constant approximation, the continuous approximation enriches the geometrical representation of structural topologies. Through two numerical examples with exact solutions, we verify the convergence and accuracy of both the VEM approximations of the displacement and material density fields. We also present several design examples involving non-Cartesian domains, demonstrating the main features of the proposed VEM-based topology optimization framework. The source code for a MATLAB implementation of the proposed work, named PolyTop3D, is available in the (electronic) Supplementary Material accompanying this publication. 
    more » « less
  4. Abstract This article presents a novel derivation for the governing equations of geometrically curved and twisted three-dimensional Timoshenko beams. The kinematic model of the beam was derived rigorously by adopting a parametric description of the axis of the beam, using the local Frenet–Serret reference system, and introducing the constraint of the beam cross ection planarity into the classical, first-order strain versus displacement relations for Cauchy’s continua. The resulting beam kinematic model includes a multiplicative term consisting of the inverse of the Jacobian of the beam axis curve. This term is not included in classical beam formulations available in the literature; its contribution vanishes exactly for straight beams and is negligible only for curved and twisted beams with slender geometry. Furthermore, to simplify the description of complex beam geometries, the governing equations were derived with reference to a generic position of the beam axis within the beam cross section. Finally, this study pursued the numerical implementation of the curved beam formulation within the conceptual framework of isogeometric analysis, which allows the exact description of the beam geometry. This avoids stress locking issues and the corresponding convergence problems encountered when classical straight beam finite elements are used to discretize the geometry of curved and twisted beams. Finally, this article presents the solution of several numerical examples to demonstrate the accuracy and effectiveness of the proposed theoretical formulation and numerical implementation. 
    more » « less
  5. attributed to loss of load carrying capacity of the individual members. Dominant failure modes in structural steel members include interactions between inelastic lateral torsional buckling, global buckling, and local buckling (referred to as Interactive Buckling). Accurate performance assessment of steel moment frames highly relies on the accuracy of the model-based simulations of such limit states. Commonly used concentrated hinge and fiber-based models fail to address the physics of this response leading to inaccurate performance assessment of structures. A nonlinear displacement-based fiber element [named Torsional Fiber Element (TFE)] to simulate monotonic and cyclic interactive buckling in steel members is proposed and implemented on OpenSees (an open-source finite element software). The element includes St. Venant as well as warping torsion response that are essential for lateral torsional buckling response in a wide-flange I-section, through enriched displacement fields and strain interpolation. Response of local buckling is represented in a quantitative manner using a novel multi-axial constitutive relationship with calibration of an effective softening behavior in the post-buckling response. Mesh dependency issue related to the softening material model is also discussed and addressed through a proposed non-local strain measure. The efficacy of the model is assessed through several continuum finite element simulations and experimental data. 
    more » « less