skip to main content


Title: A multipoint stress mixed finite element method for elasticity on quadrilateral grids
Abstract

We develop a multipoint stress mixed finite element method for linear elasticity with weak stress symmetry on quadrilateral grids, which can be reduced to a symmetric and positive definite cell centered system. The method utilizes the lowest order Brezzi–Douglas–Marini finite element spaces for the stress and the trapezoidal quadrature rule in order to localize the interaction of degrees of freedom, which allows for local stress elimination around each vertex. We develop two variants of the method. The first uses a piecewise constant rotation and results in a cell‐centered system for displacement and rotation. The second uses a continuous piecewise bilinear rotation and trapezoidal quadrature rule for the asymmetry bilinear form. This allows for further elimination of the rotation, resulting in a cell‐centered system for the displacement only. Stability and error analysis is performed for both methods. First‐order convergence is established for all variables in their natural norms. A duality argument is employed to prove second order superconvergence of the displacement at the cell centers. Numerical results are presented in confirmation of the theory.

 
more » « less
Award ID(s):
1818775
NSF-PAR ID:
10452039
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Numerical Methods for Partial Differential Equations
Volume:
37
Issue:
3
ISSN:
0749-159X
Format(s):
Medium: X Size: p. 1886-1915
Size(s):
["p. 1886-1915"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We present a discontinuity aware quadrature (DAQ) rule and use it to develop implicit self-adaptive theta (SATh) schemes for the approximation of scalar hyperbolic conservation laws. Our SATh schemes require the solution of a system of two equations, one controlling the cell averages of the solution at the time levels, and the other controlling the space-time averages of the solution. These quantities are used within the DAQ rule to approximate the time integral of the hyperbolic flux function accurately, even when the solution may be discontinuous somewhere over the time interval. The result is a finite volume scheme using the theta time stepping method, with theta defined implicitly (or self-adaptively). Two schemes are developed, self-adaptive theta upstream weighted (SATh-up) for a monotone flux function using simple upstream stabilization, and self-adaptive theta Lax–Friedrichs (SATh-LF) using the Lax–Friedrichs numerical flux. We prove that DAQ is accurate to second order when there is a discontinuity in the solution and third order when it is smooth. We prove that SATh-up is unconditionally stable, provided that theta is set to be at least 1/2 (which means that SATh can be only first order accurate in general). We also prove that SATh-up satisfies the maximum principle, and is total variation diminishing under appropriate monotonicity and boundary conditions. General flux functions require the SATh-LF scheme, so we assess its accuracy through numerical examples in one and two space dimensions. These results suggest that SATh-LF is also stable and satisfies the maximum principle (at least at reasonable Courant-Friedrichs-Lewy numbers). Compared to the solutions of finite volume schemes using Crank–Nicolson and backward Euler time stepping, SATh-LF solutions often approach the accuracy of the former, but without oscillation, and they are numerically less diffuse than the latter. 
    more » « less
  2. We present the lowest-order hybridizable discontinuous Galerkin schemes with numerical integration (quadrature), denoted as HDG-P0 for the reaction-diffusion equation and the generalized Stokes equations on conforming simplicial meshes in two- and three-dimensions. Here by lowest order, we mean that the (hybrid) finite element space for the global HDG facet degrees of freedom (DOFs) is the space of piecewise constants on the mesh skeleton. A discontinuous piecewise linear space is used for the approximation of the local primal unknowns. We give the optimal a priori error analysis of the proposed HDG-P0 schemes, which hasn’t appeared in the literature yet for HDG discretizations as far as numerical integration is concerned. Moreover, we propose optimal geometric multigrid preconditioners for the statically condensed HDG-P0 linear systems on conforming simplicial meshes. In both cases, we first establish the equivalence of the statically condensed HDG system with a (slightly modified) nonconforming Crouzeix–Raviart (CR) discretization, where the global (piecewise-constant) HDG finite element space on the mesh skeleton has a natural one-to-one correspondence to the nonconforming CR (piecewise-linear) finite element space that live on the whole mesh. This equivalence then allows us to use the well-established nonconforming geometry multigrid theory to precondition the condensed HDG system. Numerical results in two- and three-dimensions are presented to verify our theoretical findings. 
    more » « less
  3. We construct conforming finite element elasticity complexes on Worsey–Farin splits in three dimensions. Spaces for displacement, strain, stress, and the load are connected in the elasticity complex through the differential operators representing deformation, incompatibility, and divergence. For each of these component spaces, a corresponding finite element space on Worsey–Farin meshes is exhibited. Unisolvent degrees of freedom are developed for these finite elements, which also yields commuting (cochain) projections on smooth functions. A distinctive feature of the spaces in these complexes is the lack of extrinsic supersmoothness at subsimplices of the mesh. Notably, the complex yields the first (strongly) symmetric stress finite element with no vertex or edge degrees of freedom in three dimensions. Moreover, the lowest order stress space uses only piecewise linear functions which is the lowest feasible polynomial degree for the stress space.

     
    more » « less
  4. null (Ed.)
    Loss of operation or devastating damage to buildings and industrial structures, as well as equipment housed in them, has been observed due to earthquake-induced vibrations. A common source of operational downtime is due to the performance reduction of vital equipment, which are sensitive to the total transmitted acceleration. A well-known method of protecting such equipment is seismic isolation of the equipment itself (or a group of equipment), as opposed to the entire structure due to the lower cost of implementation. The first objective of this dissertation is assessing a rolling isolation system (RIS) based on existing design guidelines for telecommunications equipment. A discrepancy is observed between the required response spectrum (RRS) and the one and only accelerogram recommended in the guideline. Several filters are developed to generate synthetic accelerograms that are compatible with the RRS. The generated accelerograms are used for probabilistic assessment of a RIS that is acceptable per the guideline. This assessment reveals large failure probability due to displacement demands in excess of the displacement capacity of the RIS. When the displacement demands on an isolation system are in excess of its capacity, impacts result in spikes in transmitted acceleration. Therefore, the second objective of this dissertation is to design impact prevention/mitigation mechanisms. A dual-mode system is proposed where the behavior changes when the displacement exceeds a predefined threshold. A new piecewise optimal control approach is developed and applied to find the best possible mechanism for the region beyond the threshold. By utilizing the designed curves obtained from the proposed optimal control procedure, a Kelvin-Voigt device is tuned for illustrative purposes. On the other hand, the preference for protecting equipment decreases as the earthquake intensity increases. In extreme seismic loading, the response mitigation of the primary structure (i.e., life safety and collapse prevention) is of greater concern than protecting isolated equipment. Therefore, the third objective of this dissertation is to develop an innovative dual-mode system that can behave as equipment isolation under low to moderate seismic loading and passively transition to behave as a vibration absorber for the primary structure under extreme seismic loading. To reduce the computational cost of simulating a large linear elastic structure with nonlinear attachments (i.e., equipment isolation with cubic hardening nonlinearity), a reduced order modeling method is introduced that can capture the behavior of such nonlinear coupled systems. The method is applied to study the feasibility of dual-mode vibration isolation/absorber. To this end, nonlinear transmissibility curves for the roof displacement and isolated mass total acceleration are developed from the steady-state responses of dual-mode systems using the harmonic balanced method. The final objective of this dissertation is to extend the reduced order modeling method developed for linear elastic structure with nonlinear attachment to inelastic structures (without attachments). The new inelastic model condensation (IMC) method uses the modal properties of the full structural model (in the elastic range) to construct a linear reduced order model in conjunction with a hysteresis model to capture the hysteretic inter-story restoring forces. The parameters of these hysteretic forces are easily tuned, in order to fit the inelastic behavior of the condensed structure to that of the full model under a variety of simple loading scenarios. The fidelity of structural models condensed in this way is demonstrated via simulation for different ground motion intensities on three different building structures with various heights. The simplicity, accuracy, and efficiency of this approach could significantly alleviate the computational burden of performance-based earthquake engineering. 
    more » « less
  5. SUMMARY

    We introduce a new finite-element (FE) based computational framework to solve forward and inverse elastic deformation problems for earthquake faulting via the adjoint method. Based on two advanced computational libraries, FEniCS and hIPPYlib for the forward and inverse problems, respectively, this framework is flexible, transparent and easily extensible. We represent a fault discontinuity through a mixed FE elasticity formulation, which approximates the stress with higher order accuracy and exposes the prescribed slip explicitly in the variational form without using conventional split node and decomposition discrete approaches. This also allows the first order optimality condition, that is the vanishing of the gradient, to be expressed in continuous form, which leads to consistent discretizations of all field variables, including the slip. We show comparisons with the standard, pure displacement formulation and a model containing an in-plane mode II crack, whose slip is prescribed via the split node technique. We demonstrate the potential of this new computational framework by performing a linear coseismic slip inversion through adjoint-based optimization methods, without requiring computation of elastic Green’s functions. Specifically, we consider a penalized least squares formulation, which in a Bayesian setting—under the assumption of Gaussian noise and prior—reflects the negative log of the posterior distribution. The comparison of the inversion results with a standard, linear inverse theory approach based on Okada’s solutions shows analogous results. Preliminary uncertainties are estimated via eigenvalue analysis of the Hessian of the penalized least squares objective function. Our implementation is fully open-source and Jupyter notebooks to reproduce our results are provided. The extension to a fully Bayesian framework for detailed uncertainty quantification and non-linear inversions, including for heterogeneous media earthquake problems, will be analysed in a forthcoming paper.

     
    more » « less