skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Comparison of the MSMS and NanoShaper molecular surface triangulation codes in the TABI Poisson–Boltzmann solver
Abstract The Poisson–Boltzmann (PB) implicit solvent model is a popular framework for studying the electrostatics of solvated biomolecules. In this model the dielectric interface between the biomolecule and solvent is often taken to be the molecular surface or solvent‐excluded surface (SES), and the quality of the SES triangulation is critical in boundary element simulations of the model. This work compares the performance of the MSMS and NanoShaper surface triangulation codes for a set of 38 biomolecules. While MSMS produces triangles of exceedingly small area and large aspect ratio, the two codes yield comparable values for the SES surface area and electrostatic solvation energy, where the latter calculations were performed using the treecode‐accelerated boundary integral (TABI) PB solver. However we found that NanoShaper is computationally more efficient and reliable than MSMS, especially when parameters are set to produce highly resolved triangulations.  more » « less
Award ID(s):
1819094
PAR ID:
10451094
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Journal of Computational Chemistry
Volume:
42
Issue:
22
ISSN:
0192-8651
Page Range / eLocation ID:
p. 1552-1560
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The Poisson–Boltzmann (PB) model is a widely used electrostatic model for biomolecular solvation analysis. Formulated as an elliptic interface problem, the PB model can be numerically solved on either Eulerian meshes using finite difference/finite element methods or Lagrangian meshes using boundary element methods. Molecular surface generators, which produce the discretized dielectric interfaces between solutes and solvents, are critical factors in determining the accuracy and efficiency of the PB solvers. In this work, we investigate the utility of the Eulerian Solvent Excluded Surface (ESES) software for rendering conjugated Eulerian and Lagrangian surface representations, which enables us to numerically validate and compare the quality of Eulerian PB solvers, such as the MIBPB solver, and the Lagrangian PB solvers, such as the TABI‐PB solver. Furthermore, with the ESES software and its associated PB solvers, we are able to numerically validate an interesting and useful but often neglected source‐target symmetric property associated with the linearized PB model. 
    more » « less
  2. Abstract We describe a discrete Laplacian suitable for any triangle mesh, including those that are nonmanifold or nonorientable (with or without boundary). Our Laplacian is a robust drop‐in replacement for the usual cotan matrix, and is guaranteed to have nonnegative edge weights on both interior and boundary edges, even for extremely poor‐quality meshes. The key idea is to build what we call a “tufted cover” over the input domain, which has nonmanifold vertices but manifold edges. Since all edges are manifold, we can flip to an intrinsic Delaunay triangulation; our Laplacian is then the cotan Laplacian of this new triangulation. This construction also provides a high‐quality point cloud Laplacian, via a nonmanifold triangulation of the point set. We validate our Laplacian on a variety of challenging examples (including all models from Thingi10k), and a variety of standard tasks including geodesic distance computation, surface deformation, parameterization, and computing minimal surfaces. 
    more » « less
  3. Abstract Accurate estimation of solvation free energy (SFE) lays the foundation for accurate prediction of binding free energy. The Poisson‐Boltzmann (PB) or generalized Born (GB) combined with surface area (SA) continuum solvation method (PBSA and GBSA) have been widely used in SFE calculations because they can achieve good balance between accuracy and efficiency. However, the accuracy of these methods can be affected by several factors such as the charge models, polar and nonpolar SFE calculation methods and the atom radii used in the calculation. In this work, the performance of the ABCG2 (AM1‐BCC‐GAFF2) charge model as well as other two charge models, that is, RESP (Restrained Electrostatic Potential) and AM1‐BCC (Austin Model 1‐bond charge corrections), on the SFE prediction of 544 small molecules in water by PBSA/GBSA was evaluated. In order to improve the performance of the PBSA prediction based on the ABCG2 charge, we further explored the influence of atom radii on the prediction accuracy and yielded a set of atom radius parameters for more accurate SFE prediction using PBSA based on the ABCG2/GAFF2 by reproducing the thermodynamic integration (TI) calculation results. The PB radius parameters of carbon, oxygen, sulfur, phosphorus, chloride, bromide and iodine, were adjusted. New atom types,on,oi,hn1,hn2,hn3, were introduced to further improve the fitting performance. Then, we tuned the parameters in the nonpolar SFE model using the experimental SFE data and the PB calculation results. By adopting the new radius parameters and new nonpolar SFE model, the root mean square error (RMSE) of the SFE calculation for the 544 molecules decreased from 2.38 to 1.05 kcal/mol. Finally, the new radius parameters were applied in the prediction of protein‐ligand binding free energies using the MM‐PBSA method. For the eight systems tested, we could observe higher correlation between the experiment data and calculation results and smaller prediction errors for the absolute binding free energies, demonstrating that our new radius parameters can improve the free energy calculation using the MM‐PBSA method. 
    more » « less
  4. Computational simulation of biomolecules can provide important insights into protein design, protein-ligand binding interactions, and ab initio biomolecular folding, among other applications. Accurate treatment of the solvent environment is essential in such applications, but the use of explicit solvents can add considerable cost. Implicit treatment of solvent effects using a dielectric continuum model is an attractive alternative to explicit solvation since it is able to describe solvation effects without the inclusion of solvent degrees of freedom. Previously, we described the development and parameterization of implicit solvent models for small molecules. Here, we extend the parameterization of the generalized Kirkwood (GK) implicit solvent model for use with biomolecules described by the AMOEBA force field via the addition of corrections to the calculation of effective radii that account for interstitial spaces that arise within biomolecules. These include element-specific pairwise descreening scale factors, a short-range neck contribution to describe the solvent-excluded space between pairs of nearby atoms, and finally tanh-based rescaling of the overall descreening integral. We then apply the AMOEBA/GK implicit solvent to a set of ten proteins and achieve an average coordinate root mean square deviation for the experimental structures of 2.0 Å across 500 ns simulations. Overall, the continued development of implicit solvent models will help facilitate the simulation of biomolecules on mechanistically relevant timescales. 
    more » « less
  5. null (Ed.)
    • To compute protein pKas, a continuum dielectric Poisson-Boltzmann model defined on a molecular domain and a solvent domain is used for computing the related electrostatic free energies (top left). • The PB model in its boundary integral form is accurately solved on the triangulated molecular surface (e.g. BPTI) accelerated by a fast Treecode algorithm (top right). • The method obtains the intrinsic pKa and then computes the protonation probability for a given pH including site-site interactions by going through an energy driven titrating procedure. Comparison with experimental results are provided (bottom left and right). 
    more » « less