skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Semi-supervised and Incremental VSEARCH for Metagenomic Classification
DNA Sequencing of microbial communities from en-vironmental samples generates large volumes of data, which can be analyzed using various bioinformatics pipelines. Unsupervised clustering algorithms are usually an early and critical step in an analysis pipeline, since much of such data are unlabeled, unstructured, or novel. However, curated reference databases that provide taxonomic label information are also increasing and growing, which can help in the classification of sequences, and not just clustering. In this contribution, we report on our progress in developing a semi-supervised approach for genomic clustering algorithms, such as U/VSEARCH. The primary contribution of this approach is the ability to recognize previously seen or unseen novel sequences using an incremental approach: for sequences whose examples were previously seen by the algorithm, the algorithm can predict a correct label. For previously unseen novel sequences, the algorithm assigns a temporary label and then updates that label with a permanent one if/when such a label is established in a future reference database. The incremental learning aspect of the proposed approach provides the additional benefit and capability to process the data continuously as new datasets become available. This functionality is notable as most sequence data processing platforms are static in nature, designed to run on a single batch of data, whose only other remedy to process additional data is to combine the new and old data and rerun the entire analysis. We report our promising preliminary results on an extended 16S rRNA database.  more » « less
Award ID(s):
1936782 1936791
PAR ID:
10451099
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
2022 IEEE Symposium Series on Computational Intelligence (SSCI)
Page Range / eLocation ID:
1119 to 1126
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    In traditional graph learning tasks, such as node classification, learning is carried out in a closed-world setting where the number of classes and their training samples are provided to help train models, and the learning goal is to correctly classify unlabeled nodes into classes already known. In reality, due to limited labeling capability and dynamic evolving of networks, some nodes in the networks may not belong to any existing/seen classes, and therefore cannot be correctly classified by closed-world learning algorithms. In this paper, we propose a new open-world graph learning paradigm, where the learning goal is to not only classify nodes belonging to seen classes into correct groups, but also classify nodes not belonging to existing classes to an unseen class. The essential challenge of the openworld graph learning is that (1) unseen class has no labeled samples, and may exist in an arbitrary form different from existing seen classes; and (2) both graph feature learning and prediction should differentiate whether a node may belong to an existing/seen class or an unseen class. To tackle the challenges, we propose an uncertain node representation learning approach, using constrained variational graph autoencoder networks, where the label loss and class uncertainty loss constraints are used to ensure that the node representation learning are sensitive to unseen class. As a result, node embedding features are denoted by distributions, instead of deterministic feature vectors. By using a sampling process to generate multiple versions of feature vectors, we are able to test the certainty of a node belonging to seen classes, and automatically determine a threshold to reject nodes not belonging to seen classes as unseen class nodes. Experiments on real-world networks demonstrate the algorithm performance, comparing to baselines. Case studies and ablation analysis also show the rationale of our design for open-world graph learning. 
    more » « less
  2. Metagenomes encode an enormous diversity of proteins, reflecting a multiplicity of functions and activities. Exploration of this vast sequence space has been limited to a comparative analysis against reference microbial genomes and protein families derived from those genomes. Here, to examine the scale of yet untapped functional diversity beyond what is currently possible through the lens of reference genomes, we develop a computational approach to generate reference-free protein families from the sequence space in metagenomes. We analyze 26,931 metagenomes and identify 1.17 billion protein sequences longer than 35 amino acids with no similarity to any sequences from 102,491 reference genomes or the Pfam database. Using massively parallel graph-based clustering, we group these proteins into 106,198 novel sequence clusters with more than 100 members, doubling the number of protein families obtained from the reference genomes clustered using the same approach. We annotate these families on the basis of their taxonomic, habitat, geographical, and gene neighborhood distributions and, where sufficient sequence diversity is available, predict protein three-dimensional models, revealing novel structures. Overall, our results uncover an enormously diverse functional space, highlighting the importance of further exploring the microbial functional dark matter. 
    more » « less
  3. BackgroundThe advancement of sequencing technology has led to a rapid increase in the amount of DNA and protein sequence data; consequently, the size of genomic and proteomic databases is constantly growing. As a result, database searches need to be continually updated to account for the new data being added. However, continually re-searching the entire existing dataset wastes resources. Incremental database search can address this problem. MethodsOne recently introduced incremental search method is iBlast, which wraps the BLAST sequence search method with an algorithm to reuse previously processed data and thereby increase search efficiency. The iBlast wrapper, however, must be generalized to support better performing DNA/protein sequence search methods that have been developed, namely MMseqs2 and Diamond. To address this need, we propose iSeqsSearch, which extends iBlast by incorporating support for MMseqs2 (iMMseqs2) and Diamond (iDiamond), thereby providing a more generalized and broadly effective incremental search framework. Moreover, the previously published iBlast wrapper has to be revised to be more robust and usable by the general community. ResultsiMMseqs2 and iDiamond, which apply the incremental approach, perform nearly identical to MMseqs2 and Diamond. Notably, when comparing ranking comparison methods such as the Pearson correlation, we observe a high concordance of over 0.9, indicating similar results. Moreover, in some cases, our incremental approach, iSeqsSearch, which extends the iBlast merge function to iMMseqs2 and iDiamond, provides more hits compared to the conventional MMseqs2 and Diamond methods. ConclusionThe incremental approach using iMMseqs2 and iDiamond demonstrates efficiency in terms of reusing previously processed data while maintaining high accuracy and concordance in search results. This method can reduce resource waste in continually growing genomic and proteomic database searches. The sample codes and data are available at GitHub and Zenodo (https://github.com/EESI/Incremental-Protein-Search; DOI:10.5281/zenodo.14675319). 
    more » « less
  4. null (Ed.)
    Abstract Subspace clustering is the unsupervised grouping of points lying near a union of low-dimensional linear subspaces. Algorithms based directly on geometric properties of such data tend to either provide poor empirical performance, lack theoretical guarantees or depend heavily on their initialization. We present a novel geometric approach to the subspace clustering problem that leverages ensembles of the $$K$$-subspace (KSS) algorithm via the evidence accumulation clustering framework. Our algorithm, referred to as ensemble $$K$$-subspaces (EKSSs), forms a co-association matrix whose $(i,j)$th entry is the number of times points $$i$$ and $$j$$ are clustered together by several runs of KSS with random initializations. We prove general recovery guarantees for any algorithm that forms an affinity matrix with entries close to a monotonic transformation of pairwise absolute inner products. We then show that a specific instance of EKSS results in an affinity matrix with entries of this form, and hence our proposed algorithm can provably recover subspaces under similar conditions to state-of-the-art algorithms. The finding is, to the best of our knowledge, the first recovery guarantee for evidence accumulation clustering and for KSS variants. We show on synthetic data that our method performs well in the traditionally challenging settings of subspaces with large intersection, subspaces with small principal angles and noisy data. Finally, we evaluate our algorithm on six common benchmark datasets and show that unlike existing methods, EKSS achieves excellent empirical performance when there are both a small and large number of points per subspace. 
    more » « less
  5. Clustering streaming data has gained importance in recent years due to an expanding opportunity to discover knowledge in widely available data streams. As streams are potentially evolving and unbounded sequence of data objects, clustering algorithms capable of performing fast and incremental processing of data points are necessary. This paper presents a method of clustering high-dimensional data streams using approximate methods called streamingRPHash. streamingRPHash combines random projections with locality-sensitivity hashing to construct a high-performance clustering method. streamingRPHash is amenable to distributed processing frameworks such as Map-Reduce, and also has the benefits of constrained overall complexity growth. This paper describes streamingRPHash algorithm and its various configurations. The clustering performance of streamingRPHash is compared to several alternatives. Experimental results show that streamingRPHash has comparable clustering accuracy and substantially lower runtime and memory usage. 
    more » « less