skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 13 until 2:00 AM ET on Saturday, September 14 due to maintenance. We apologize for the inconvenience.


Title: Hierarchical off-diagonal low-rank approximation of Hessians in inverse problems, with application to ice sheet model initialization
Abstract Obtaining lightweight and accurate approximations of discretized objective functional Hessians in inverse problems governed by partial differential equations (PDEs) is essential to make both deterministic and Bayesian statistical large-scale inverse problems computationally tractable. The cubic computational complexity of dense linear algebraic tasks, such as Cholesky factorization, that provide a means to sample Gaussian distributions and determine solutions of Newton linear systems is a computational bottleneck at large-scale. These tasks can be reduced to log-linear complexity by utilizing hierarchical off-diagonal low-rank (HODLR) matrix approximations. In this work, we show that a class of Hessians that arise from inverse problems governed by PDEs are well approximated by the HODLR matrix format. In particular, we study inverse problems governed by PDEs that model the instantaneous viscous flow of ice sheets. In these problems, we seek a spatially distributed basal sliding parameter field such that the flow predicted by the ice sheet model is consistent with ice sheet surface velocity observations. We demonstrate the use of HODLR Hessian approximation to efficiently sample the Laplace approximation of the posterior distribution with covariance further approximated by HODLR matrix compression. Computational studies are performed which illustrate ice sheet problem regimes for which the Gauss–Newton data-misfit Hessian is more efficiently approximated by the HODLR matrix format than the low-rank (LR) format. We then demonstrate that HODLR approximations can be favorable, when compared to global LR approximations, for large-scale problems by studying the data-misfit Hessian associated with inverse problems governed by the first-order Stokes flow model on the Humboldt glacier and Greenland ice sheet.  more » « less
Award ID(s):
1654311 1840265
NSF-PAR ID:
10451516
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Inverse Problems
Volume:
39
Issue:
8
ISSN:
0266-5611
Page Range / eLocation ID:
085006
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    We present an extensible software framework, hIPPYlib, for solution of large-scale deterministic and Bayesian inverse problems governed by partial differential equations (PDEs) with (possibly) infinite-dimensional parameter fields (which are high-dimensional after discretization). hIPPYlib overcomes the prohibitively expensive nature of Bayesian inversion for this class of problems by implementing state-of-the-art scalable algorithms for PDE-based inverse problems that exploit the structure of the underlying operators, notably the Hessian of the log-posterior. The key property of the algorithms implemented in hIPPYlib is that the solution of the inverse problem is computed at a cost, measured in linearized forward PDE solves, that is independent of the parameter dimension. The mean of the posterior is approximated by the MAP point, which is found by minimizing the negative log-posterior with an inexact matrix-free Newton-CG method. The posterior covariance is approximated by the inverse of the Hessian of the negative log posterior evaluated at the MAP point. The construction of the posterior covariance is made tractable by invoking a low-rank approximation of the Hessian of the log-likelihood. Scalable tools for sample generation are also discussed. hIPPYlib makes all of these advanced algorithms easily accessible to domain scientists and provides an environment that expedites the development of new algorithms. 
    more » « less
  2. Beattie, C.A. ; Benner, P. ; Embree, M. ; Gugercin, S. ; Lefteriu, S. (Ed.)
    This paper introduces reduced order model (ROM) based Hessian approximations for use in inexact Newton methods for the solution of optimization problems implicitly constrained by a large-scale system, typically a discretization of a partial differential equation (PDE). The direct application of an inexact Newton method to this problem requires the solution of many PDEs per optimization iteration. To reduce the computational complexity, a ROM Hessian approximation is proposed. Since only the Hessian is approximated, but the original objective function and its gradient is used, the resulting inexact Newton method maintains the first-order global convergence property, under suitable assumptions. Thus even computationally inexpensive lower fidelity ROMs can be used, which is different from ROM approaches that replace the original optimization problem by a sequence of ROM optimization problem and typically need to accurately approximate function and gradient information of the original problem. In the proposed approach, the quality of the ROM Hessian approximation determines the rate of convergence, but not whether the method converges. The projection based ROM is constructed from state and adjoint snapshots, and is relatively inexpensive to compute. Numerical examples on semilinear parabolic optimal control problems demonstrate that the proposed approach can lead to substantial savings in terms of overall PDE solves required. 
    more » « less
  3. Bayesian inference provides a systematic framework for integration of data with mathematical models to quantify the uncertainty in the solution of the inverse problem. However, the solution of Bayesian inverse problems governed by complex forward models described by partial differential equations (PDEs) remains prohibitive with black-box Markov chain Monte Carlo (MCMC) methods. We present hIPPYlib-MUQ, an extensible and scalable software framework that contains implementations of state-of-the art algorithms aimed to overcome the challenges of high-dimensional, PDE-constrained Bayesian inverse problems. These algorithms accelerate MCMC sampling by exploiting the geometry and intrinsic low-dimensionality of parameter space via derivative information and low rank approximation. The software integrates two complementary open-source software packages, hIPPYlib and MUQ. hIPPYlib solves PDE-constrained inverse problems using automatically-generated adjoint-based derivatives, but it lacks full Bayesian capabilities. MUQ provides a spectrum of powerful Bayesian inversion models and algorithms, but expects forward models to come equipped with gradients and Hessians to permit large-scale solution. By combining these two complementary libraries, we created a robust, scalable, and efficient software framework that realizes the benefits of each and allows us to tackle complex large-scale Bayesian inverse problems across a broad spectrum of scientific and engineering disciplines. To illustrate the capabilities of hIPPYlib-MUQ, we present a comparison of a number of MCMC methods available in the integrated software on several high-dimensional Bayesian inverse problems. These include problems characterized by both linear and nonlinear PDEs, various noise models, and different parameter dimensions. The results demonstrate that large (∼ 50×) speedups over conventional black box and gradient-based MCMC algorithms can be obtained by exploiting Hessian information (from the log-posterior), underscoring the power of the integrated hIPPYlib-MUQ framework. 
    more » « less
  4. Newton's method is usually preferred when solving optimization problems due to its superior convergence properties compared to gradient-based or derivative-free optimization algorithms. However, deriving and computing second-order derivatives needed by Newton's method often is not trivial and, in some cases, not possible. In such cases quasi-Newton algorithms are a great alternative. In this paper, we provide a new derivation of well-known quasi-Newton formulas in an infinite-dimensional Hilbert space setting. It is known that quasi-Newton update formulas are solutions to certain variational problems over the space of symmetric matrices. In this paper, we formulate similar variational problems over the space of bounded symmetric operators in Hilbert spaces. By changing the constraints of the variational problem we obtain updates (for the Hessian and Hessian inverse) not only for the Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton method but also for Davidon--Fletcher--Powell (DFP), Symmetric Rank One (SR1), and Powell-Symmetric-Broyden (PSB). In addition, for an inverse problem governed by a partial differential equation (PDE), we derive DFP and BFGS ``structured" secant formulas that explicitly use the derivative of the regularization and only approximates the second derivative of the misfit term. We show numerical results that demonstrate the desired mesh-independence property and superior performance of the resulting quasi-Newton methods. 
    more » « less
  5. Abstract The replacement of a nonlinear parameter-to-observable mapping with a linear (affine) approximation is often carried out to reduce the computational costs associated with solving large-scale inverse problems governed by partial differential equations (PDEs). In the case of a linear parameter-to-observable mapping with normally distributed additive noise and a Gaussian prior measure on the parameters, the posterior is Gaussian. However, substituting an accurate model for a (possibly well justified) linear surrogate model can give misleading results if the induced model approximation error is not accounted for. To account for the errors, the Bayesian approximation error (BAE) approach can be utilised, in which the first and second order statistics of the errors are computed via sampling. The most common linear approximation is carried out via linear Taylor expansion, which requires the computation of (Fréchet) derivatives of the parameter-to-observable mapping with respect to the parameters of interest. In this paper, we prove that the (approximate) posterior measure obtained by replacing the nonlinear parameter-to-observable mapping with a linear approximation is in fact independent of the choice of the linear approximation when the BAE approach is employed. Thus, somewhat non-intuitively, employing the zero-model as the linear approximation gives the same approximate posterior as any other choice of linear approximations of the parameter-to-observable model. The independence of the linear approximation is demonstrated mathematically and illustrated with two numerical PDE-based problems: an inverse scattering type problem and an inverse conductivity type problem. 
    more » « less