skip to main content

Title: Effect of Class C and Class F Fly Ash on Early-Age and Mature-Age Properties of Calcium Sulfoaluminate Cement Paste
To promote the sustainable development of eco-efficient calcium sulfoaluminate (CSA) cements through the partial replacement of the CSA clinker with supplementary cementitious waste products, the effects of coal fly ashes on the early-age and mature-age properties of a calcium sulfoaluminate (CSA)-based cement paste were investigated. The impacts of both Class C and Class F fly ashes on the rheological properties, hydration kinetics, and compressive strength development of CSA cement paste were studied. Rheology-based workability parameters, representing the rate of loss of flowability, the rate of hardening, and the placement limit, were characterized for the pastes prepared with fixed water-to-cement (w/c) and fixed water-to-binder (w/b) ratios. The results indicate a slight improvement in the workability of the CSA paste by fly ash addition at a fixed w/b ratio. The isothermal calorimetry studies show a higher heat of hydration for the Class C fly ash-modified systems compared to the Class F-modified systems. The results show that fly ash accelerates the hydration of the calcium sulfoaluminate cement pastes, chiefly due to the filler effects, rather than the pozzolanic effects. In general, ettringite is stabilized more by the addition of Class F fly ash than Class C fly ash. Both fly ashes reduced the 1-day compressive strength, but increased the 28-day strength of the CSA cement paste; meanwhile, the Class C modified pastes show a higher strength than Class F, which is attributed to the higher degree of reaction and potentially more cohesive binding C-S-H-based gels formed in the Class C fly ash modified systems. The results provide insights that support that fly ash can be employed to improve the performance of calcium sulfoaluminate cement pastes, while also enhancing cost effectiveness and sustainability.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Page Range / eLocation ID:
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Poor workability is a common feature of calcium sulfoaluminate (CSA) cement paste. Multiple chemical admixtures, such as set retarders and dispersants, are frequently employed to improve the workability and delay the setting of CSA cement paste. A quantitative assessment of the compatibility, efficiency, and the effects of the admixtures on cement paste workability is critical for the design of an appropriate paste formulation and admixture proportioning. Very limited studies are available on the quantitative rheology-based method for evaluating the workability of calcium sulfoaluminate cement pastes. This study presents a novel and robust time-dependent rheological method for quantifying the workability of CSA cement pastes modified with the incorporation of citric acid as a set retarder and a polycarboxylate ether (PCE)-based superplasticizer as a dispersant. The yield stress is measured as a function of time, and the resulting curve is applied to quantify three specific workability parameters: (i) the rate at which the paste loses flowability, (ii) the time limit for paste placement or pumping, marking the onset of acceleration to initial setting, and (iii) the rate at which the paste accelerates to final setting. The results of the tested CSA systems show that the rate of the loss of flowability and the rate of hardening decrease monotonously, while the time limit for casting decreases linearly with the increase in citric acid concentration. The dosage rate of PCE has a relatively small effect on the quantified workability parameters, partly due to the competitive adsorption of citrate ions. The method demonstrated here can characterize the interaction or co-influence of multiple admixtures on early-age properties of the cement paste, thus providing a quantitative rheological protocol for determining the workability and a novel approach to material selection and mixture design. 
    more » « less
  2. This study characterized and evaluated the use of reclaimed fly ash (RFA) and reclaimed ground bottom ash (GBA) as alternative sources of supplementary cementitious materials (SCMs) for the production of concrete mixtures. Conventional Class F fly ash (FA) was also evaluated for comparison. The effects of SCM content on fresh and hardened properties of concrete were investigated by replacing 10%, 20%, and 30% of cement by mass. Characterization results showed that all three ashes met ASTM C618 chemical requirements (i.e., sum of SiO 2  + Al 2 O 3  + Fe 2 O 3 , CaO, SO 3 , moisture content, and loss of ignition) and 7- and 28-days strength activity index (SAI) requirements for Class F FA. In addition, RFA exhibited slightly higher SAI at 28 days of curing, followed by GBA and FA. In relation to fresh concrete properties, FA increased the concrete slump compared with the control mixture, whereas RFA and GBA decreased the concrete slump. However, GBA produced more significant slump decrements than RFA, which was attributed to the irregular angular particles of GBA. Generally, all the coal ashes produced decrements in air content compared with the control mixture. Comparatively, among the three ashes, GBA exhibited the highest 28- and 90-days compressive strength and surface resistivity (SR) at all cement replacement levels. Furthermore, at 90 days of curing, RFA and GBA concrete mixtures outperformed the FA concrete mixtures in relation to compressive strength and SR. Consequently, both RFA and GBA are promising SCMs for concrete materials. 
    more » « less
  3. Abstract A novel method is developed for reusing the waste glass fiber-reinforced polymer (GFRP) powder as a precursor in geopolymer production. Several activation parameters that affect the workability and strength gain of GFRP powder-based geopolymers are investigated. The results of an experimental study reveal that the early strength of GFRP powder-based geopolymer pastes develops slowly at ambient temperature. The highest compressive strength of GFRP powder-based geopolymer pastes is 7.13 MPa at an age of 28 days. The ratio of compressive strength to flexural strength of GFRP powder-based-geopolymers is lower than that of fly ash and ground granulated blast furnace slag (GGBS)-based geopolymers, indicating that the incorporation of GFRP powder can improve the geopolymer brittleness. GGBS is incorporated into geopolymer blends to accelerate the early activity of GFRP powder. The binary geopolymer pastes exhibit shorter setting times and higher mechanical strength values than those of single GFRP powder geopolymer pastes. The GGBS geopolymer concrete mixture with 30 wt% GFRP powder displayed the highest compressive strength and flexural strength values and was less brittle. The developed binary GFRP powder/GGBS-based geopolymers reduce the disadvantages of single GFRP powder or GGBS geopolymers, and thus, offer high potential as a building construction material. 
    more » « less
  4. This paper aims to clarify the influence of different types of fly ash on the mechanical properties and self-healing behavior of Engineered Cementitious Composite (ECC). Five types of fly ash with different chemical and physical properties were used in ECC mixtures. The fly ash to cement ratio was fixed at 3.0. The compressive and uniaxial tensile tests were conducted to evaluate the influence of fly ash type on mechanical properties. The permeability test was used to assess self-healing behavior of ECCs with different types of fly ash. The microtopography and chemical characteristics of the self-healing products in the crack were observed and examined by scanning electron microscope (SEM) and energy dispersive X-ray spectroscopy (EDS). The fly ash with relatively higher calcium content and smaller particle size was found conducive to a higher compressive strength. The lower combined Al2O3 and CaO content of this fly ash, however, was found to enhance the tensile strain capacity. Furthermore, high calcium fly ash accelerates the self-healing process of ECC for the same pre-damaged level. The self-healing product was a mixed CaCO3/C-S-H system with the CaCO3 as the main ingredient. 
    more » « less
  5. null (Ed.)
    The effect of hydrogels containing nanosilica (NSi) on the autogenous shrinkage, mechanical strength, and electrical resistivity of cement pastes was studied. The interaction between the hydrogels and the surrounding cementitious matrix was examined using thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). The addition of hydrogels decreased autogenous shrinkage in the cement pastes and this reduction showed a dependence on the concentration of NSi in the hydrogels. Compressive strength and electrical resistivity were reduced in the cement pastes with hydrogels and this reduction was decreased with increased concentration of NSi in the hydrogel. A change in the phase composition of the cement paste in the region close to the hydrogel was noted, compared to the region away from the hydrogel. In a lime solution with increased pH and temperature, Ca(OH)2 and CaCO3 were found to form within the hydrogels; evidence of calcium-silicate-hydrate (C-S-H) formation in the hydrogels with NSi was obtained, indicating the possible pozzolanic potential of the hydrogels with NSi. 
    more » « less