skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Scaling Laws for the Length Scale of Energy‐Containing Eddies in a Sheared and Thermally Stratified Atmospheric Surface Layer
Abstract In the atmospheric surface layer (ASL), a characteristic wavelength marking the limit between energy‐containing and inertial subrange scales can be defined from the vertical velocity spectrum. This wavelength is related to the integral length scale of turbulence, used in turbulence closure approaches for the ASL. The scaling laws describing the displacement of this wavelength with changes in atmospheric stability have eluded theoretical treatment and are considered here. Two derivations are proposed for mildly unstable to mildly stable ASL flows one that only makes use of normalizing constraints on the vertical velocity variance along with idealized spectral shapes featuring production to inertial subrange regimes, while another utilizes a co‐spectral budget with a return‐to‐isotropy closure. The expressions agree with field experiments and permit inference of the variations of the wavelength with atmospheric stability. This methodology offers a new perspective for numerical and theoretical modeling of ASL flows and for experimental design.  more » « less
Award ID(s):
1644382 2028633
PAR ID:
10451679
Author(s) / Creator(s):
 ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
47
Issue:
23
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The influence of thermal stratification on the turbulent kinetic energy balance has been widely studied; however, its influence on the turbulent stress remains less explored in the presence of tall vegetated canopies and less ideal micrometeorological conditions. Here, the impact of thermal stratification on turbulent momentum flux is considered in the roughness sublayer (RSL) and the atmospheric surface layer (ASL) using the Amazon Tall Tower Observatory (ATTO) in Brazil. A scalewise co‐spectral budget (CSB) model is developed using standard closure schemes for the pressure–velocity decorrelation. The CSB revealed that the co‐spectrum between longitudinal () and vertical () velocity fluctuations is impacted by the energy spectrum of the vertical velocity and the much less studied longitudinal heat‐flux co‐spectrum , where are temperature fluctuations and is the longitudinal wavenumber. Under stable, very stable, and dynamic–convective conditions, the scaling exponent in for the inertial subrange (ISR) scales is dominated by instead of . A near scaling in robust to large variations in thermal stratification is found, whereas the Kolmogorov ISR scaling for is not found. The scale‐dependent decorrelation time between and is dominated by in the ISR, but is nearly constant for eddies larger than the vertical velocity integral scale, regardless of stability. Implications of these findings for generalized stability correction functions that are based on the turbulent stress budget instead of the turbulent kinetic energy budget are discussed. 
    more » « less
  2. The inertial subrange of turbulent scales is commonly reflected by a power law signature in ensemble statistics such as the energy spectrum and structure functions – both in theory and from observations. Despite promising findings on the topic of fractal geometries in turbulence, there is no accepted image for the physical flow features corresponding to this statistical signature in the inertial subrange. The present study uses boundary layer turbulence measurements to evaluate the self-similar geometric properties of velocity isosurfaces and investigate their influence on statistics for the velocity signal. The fractal dimension of streamwise velocity isosurfaces, indicating statistical self-similarity in the size of ‘wrinkles’ along each isosurface, is shown to be constant only within the inertial subrange of scales. For the transition between the inertial subrange and production range, it is inferred that the largest wrinkles become increasingly confined by the overall size of large-scale coherent velocity regions such as uniform momentum zones. The self-similarity of isosurfaces yields power-law trends in subsequent one-dimensional statistics. For instance, the theoretical 2/3 power-law exponent for the structure function can be recovered by considering the collective behaviour of numerous isosurface level sets. The results suggest that the physical presence of inertial subrange eddies is manifested in the self-similar wrinkles of isosurfaces. 
    more » « less
  3. Abstract Stratification can cause turbulence spectra to deviate from Kolmogorov's isotropicpower law scaling in the universal equilibrium range at high Reynolds numbers. However, a consensus has not been reached with regard to the exact shape of the spectra. Here we propose a shape of the turbulent kinetic energy and temperature spectra in horizontal wavenumber for the equilibrium range that consists of three regimes at small Froude number: the buoyancy subrange, a transition region, and the isotropic inertial subrange through dimensional analysis and substantial revision of previous theoretical approximation. These spectral regimes are confirmed by various observations in the atmospheric boundary layer. The representation of the transition region in direct numerical simulations will require large‐scale separation between the Dougherty‐Ozmidov scale and the Kolmogorov scale for strongly stratified turbulence at high Reynolds numbers, which is still challenging computationally. In addition, we suggest that the failure of Monin‐Obukhov similarity theory in the very stable atmospheric boundary layer is due to the fact that it does not consider the buoyancy scale that characterizes the transition region. 
    more » « less
  4. Abstract Top‐down entrainment shapes the vertical gradients of sensible heat, latent heat, and CO2fluxes, influencing the interpretation of eddy covariance (EC) measurements in the unstable atmospheric surface layer (ASL). Using large eddy simulations for convective boundary layer flows, we demonstrate that decreased temperature gradients across the entrainment zone increase entrainment fluxes by enhancing the entrainment velocity, amplifying the asymmetry between top‐down and bottom‐up flux contributions. These changes alter scalar flux profiles, causing flux divergence or convergence and leading to the breakdown of the constant flux layer assumption (CFLA) in the ASL. As a result, EC‐measured fluxes either underestimate or overestimate “true” surface fluxes during divergence or convergence phases, contributing to energy balance non‐closure. The varying degrees of the CFLA breakdown are a fundamental cause for the non‐closure issue. These findings highlight the underappreciated role of entrainment in interpreting EC fluxes, addressing non‐closure, and understanding site‐to‐site variability in flux measurements. 
    more » « less
  5. Large-scale magnetic fields thread through the electrically conducting matter of the interplanetary and interstellar medium, stellar interiors and other astrophysical plasmas, producing anisotropic flows with regions of high-Reynolds-number turbulence. It is common to encounter turbulent flows structured by a magnetic field with a strength approximately equal to the root-mean-square magnetic fluctuations. In this work, direct numerical simulations of anisotropic magnetohydrodynamic (MHD) turbulence influenced by such a magnetic field are conducted for a series of cases that have identical resolution, and increasing grid sizes up to $2048^3$ . The result is a series of closely comparable simulations at Reynolds numbers ranging from 1400 up to 21 000. We investigate the influence of the Reynolds number from the Lagrangian viewpoint by tracking fluid particles and calculating single-particle and two-particle statistics. The influence of Alfvénic fluctuations and the fundamental anisotropy on the MHD turbulence in these statistics is discussed. Single-particle diffusion curves exhibit mildly superdiffusive behaviours that differ in the direction aligned with the magnetic field and the direction perpendicular to it. Competing alignment processes affect the dispersion of particle pairs, in particular at the beginning of the inertial subrange of time scales. Scalings for relative dispersion, which become clearer in the inertial subrange for a larger Reynolds number, can be observed that are steeper than indicated by the Richardson prediction. 
    more » « less