skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Describing alpine lake influence on stream network temperatures: A statistical modelling approach
Abstract Systematic variations in atmospheric heat exchange, surface residence time, and groundwater influx across montane stream networks commonly produce an increasing stream temperature trend with decreasing elevation. However, complex stream temperature profiles that differ from this common longitudinal trend also exist, suggesting that stream temperatures may be influenced by complex interactions among hydrologic and atmospheric processes. Lakes within stream networks form one potential source of temperature profile complexity due to the spatially variable contribution of lake‐sourced water to stream flow. We investigated temperature profile complexity in a multi‐season stream temperature dataset collected across a montane stream network containing many alpine lakes. This investigation was performed by making comparisons between multiple statistical models that used different combinations of stream and lake characteristics to represent specific hypotheses for the controls on stream temperature. The compared models included a set of models which used a topographically derived estimate of the hydrologic influence of lakes to separate and quantify the effects of stream elevation and lake source‐water contributions to longitudinal stream temperature patterns. This source‐water mixing model provided a parsimonious explanation for complex stream‐network temperature patterns in the summer and autumn, and this approach may be further applicable to other systems where stream temperatures are influenced by multiple water sources. Simpler models that discounted lake effects were more optimal during the winter and spring, suggesting that complex patterns in stream temperature profiles may emerge and subside temporally, across seasons, in response to diversity of water temperatures from different sources.  more » « less
Award ID(s):
1637686
PAR ID:
10452001
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Hydrological Processes
Volume:
35
Issue:
3
ISSN:
0885-6087
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Atmospheric warming heats lakes, but the causes of variation among basins are poorly understood. Here, multi-decadal profiles of water temperatures, trophic state, and local climate from 345 temperate lakes are combined with data on lake geomorphology and watershed characteristics to identify controls of the relative rates of temperature change in water (WT) and air (AT) during summer. We show that differences in local climate (AT, wind speed, humidity, irradiance), land cover (forest, urban, agriculture), geomorphology (elevation, area/depth ratio), and water transparency explain >30% of the difference in rate of lake heating compared to that of the atmosphere. Importantly, the rate of lake heating slows as air warms (P < 0.001). Clear, cold, and deep lakes, especially at high elevation and in undisturbed catchments, are particularly responsive to changes in atmospheric temperature. We suggest that rates of surface water warming may decline relative to the atmosphere in a warmer future, particularly in sites already experiencing terrestrial development or eutrophication. 
    more » « less
  2. Abstract Globally, lake surface water temperatures have warmed rapidly relative to air temperatures, but changes in deepwater temperatures and vertical thermal structure are still largely unknown. We have compiled the most comprehensive data set to date of long-term (1970–2009) summertime vertical temperature profiles in lakes across the world to examine trends and drivers of whole-lake vertical thermal structure. We found significant increases in surface water temperatures across lakes at an average rate of + 0.37 °C decade−1, comparable to changes reported previously for other lakes, and similarly consistent trends of increasing water column stability (+ 0.08 kg m−3decade−1). In contrast, however, deepwater temperature trends showed little change on average (+ 0.06 °C decade−1), but had high variability across lakes, with trends in individual lakes ranging from − 0.68 °C decade−1to + 0.65 °C decade−1. The variability in deepwater temperature trends was not explained by trends in either surface water temperatures or thermal stability within lakes, and only 8.4% was explained by lake thermal region or local lake characteristics in a random forest analysis. These findings suggest that external drivers beyond our tested lake characteristics are important in explaining long-term trends in thermal structure, such as local to regional climate patterns or additional external anthropogenic influences. 
    more » « less
  3. Abstract Global change may contribute to ecological changes in high-elevation lakes and reservoirs, but a lack of data makes it difficult to evaluate spatiotemporal patterns. Remote sensing imagery can provide more complete records to evaluate whether consistent changes across a broad geographic region are occurring. We used Landsat surface reflectance data to evaluate spatial patterns of contemporary lake color (2010–2020) in 940 lakes in the U.S. Rocky Mountains, a historically understudied area for lake water quality. Intuitively, we found that most of the lakes in the region are blue (66%) and were found in steep-sided watersheds (>22.5°) or alternatively were relatively deep (>4.5 m) with mean annual air temperature (MAAT) <4.5°C. Most green/brown lakes were found in relatively shallow sloped watersheds with MAAT ⩾4.5°C. We extended the analysis of contemporary lake color to evaluate changes in color from 1984 to 2020 for a subset of lakes with the most complete time series ( n = 527). We found limited evidence of lakes shifting from blue to green states, but rather, 55% of the lakes had no trend in lake color. Surprisingly, where lake color was changing, 32% of lakes were trending toward bluer wavelengths, and only 13% shifted toward greener wavelengths. Lakes and reservoirs with the most substantial shifts toward blue wavelengths tended to be in urbanized, human population centers at relatively lower elevations. In contrast, lakes that shifted to greener wavelengths did not relate clearly to any lake or landscape features that we evaluated, though declining winter precipitation and warming summer and fall temperatures may play a role in some systems. Collectively, these results suggest that the interactions between local landscape factors and broader climatic changes can result in heterogeneous, context-dependent changes in lake color. 
    more » « less
  4. Abstract Mountain lakes experience extreme interannual climate variation as well as rapidly warming air temperatures, making them ideal systems to understand lake‐climate responses. Snowpack and water temperature are highly correlated in mountain lakes, but we lack a complete understanding of underlying mechanisms. Motivated by predicted declines in snowfall with future temperature increases, we investigated how surface heat fluxes and lake warming responded to variation in snowpack, ice‐off, and summer weather patterns in a high elevation lake in the Sierra Nevada, California. Ice‐off timing determined the phenology of lake exposure to solar radiation, and was the dominant mechanism linking snowpack to lake temperature. The relative importance of heat loss fluxes (longwave radiation, latent and sensible heat exchange) varied among wet and dry years. Declines in snowpack and ice cover in mountain systems will reduce variability in lake thermal responses and increase the responsiveness of lake warming to atmospheric forcing. 
    more » « less
  5. Taken together, lakes and drained lake basins may cover up to 80% of the lowland landscapes in permafrost regions of the Arctic. Lake formation, growth, and drainage in lowland permafrost regions create a terrestrial and aquatic landscape mosaic of importance to geomorphic and hydrologic processes, tundra vegetation communities, permafrost and ground-ice characteristics, biogeochemical cycling, wildlife habitat, and human land-use activities. Our project focuses on quantifying the role of thermokarst lake expansion, drainage, and drained lake basin evolution in the Arctic System. We did this through a combination of field studies, environmental sensor networks, remote sensing, and modeling. This dataset consists of environmental sensor records that record temperature and water level at three lakes in the Bugeye Lakes Complex in 2021 and 2022. Onset HOBO water level loggers (U2OL-04) were deployed in Bugeye Lakes 1, 2, and 4 in 2021 and 2022 to record temperature and pressure changes at 30-minute intervals. Water level was determined in Onset Hoboware Pro v. 3.7.23 using the barometric compensation assistant based on pressure transducer measurements below the water and from nearby atmospheric pressure measurements from a local pressure transducer mounted to pole on the tundra. The sensor data capture the partial drainage of Bugeye Lakes 2 and 4 into Bugeye Lake 1. Bugeye Lakes 1 and 2 also measure snow dam outburst flooding associated with the recently drained lake basins. 
    more » « less