skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Domain decomposition and multiscale mortar mixed finite element methods for linear elasticity with weak stress symmetry
Two non-overlapping domain decomposition methods are presented for the mixed finite element formulation of linear elasticity with weakly enforced stress symmetry. The methods utilize either displacement or normal stress Lagrange multiplier to impose interface continuity of normal stress or displacement, respectively. By eliminating the interior subdomain variables, the global problem is reduced to an interface problem, which is then solved by an iterative procedure. The condition number of the resulting algebraic interface problem is analyzed for both methods. A multiscale mortar mixed finite element method for the problem of interest on non-matching multiblock grids is also studied. It uses a coarse scale mortar finite element space on the non-matching interfaces to approximate the trace of the displacement and impose weakly the continuity of normal stress. A priori error analysis is performed. It is shown that, with appropriate choice of the mortar space, optimal convergence on the fine scale is obtained for the stress, displacement, and rotation, as well as some superconvergence for the displacement. Computational results are presented in confirmation of the theory of all proposed methods.  more » « less
Award ID(s):
1818775
PAR ID:
10181539
Author(s) / Creator(s):
;
Date Published:
Journal Name:
ESAIM: Mathematical Modelling and Numerical Analysis
Volume:
53
Issue:
6
ISSN:
0764-583X
Page Range / eLocation ID:
2081 to 2108
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We develop a mixed finite element method for the coupled problem arising in the interaction between a free fluid governed by the Stokes equations and flow in deformable porous medium modeled by the Biot system of poroelasticity. Mass conservation, balance of stress, and the Beavers–Joseph–Saffman condition are imposed on the interface. We consider a fully mixed Biot formulation based on a weakly symmetric stress-displacement-rotation elasticity system and Darcy velocity-pressure flow formulation. A velocity-pressure formulation is used for the Stokes equations. The interface conditions are incorporated through the introduction of the traces of the structure velocity and the Darcy pressure as Lagrange multipliers. Existence and uniqueness of a solution are established for the continuous weak formulation. Stability and error estimates are derived for the semi-discrete continuous-in-time mixed finite element approximation. Numerical experiments are presented to verify the theoretical results and illustrate the robustness of the method with respect to the physical parameters. 
    more » « less
  2. Abstract We develop a multipoint stress mixed finite element method for linear elasticity with weak stress symmetry on quadrilateral grids, which can be reduced to a symmetric and positive definite cell centered system. The method utilizes the lowest order Brezzi–Douglas–Marini finite element spaces for the stress and the trapezoidal quadrature rule in order to localize the interaction of degrees of freedom, which allows for local stress elimination around each vertex. We develop two variants of the method. The first uses a piecewise constant rotation and results in a cell‐centered system for displacement and rotation. The second uses a continuous piecewise bilinear rotation and trapezoidal quadrature rule for the asymmetry bilinear form. This allows for further elimination of the rotation, resulting in a cell‐centered system for the displacement only. Stability and error analysis is performed for both methods. First‐order convergence is established for all variables in their natural norms. A duality argument is employed to prove second order superconvergence of the displacement at the cell centers. Numerical results are presented in confirmation of the theory. 
    more » « less
  3. This paper addresses the challenge of constructing finite element curl div complexes in three dimensions. Tangential-normal continuity is introduced in order to develop distributional finite element curl div complexes. The spaces constructed are applied to discretize the quad curl problem, demonstrating optimal order of convergence. Furthermore, a hybridization technique is proposed, demonstrating its equivalence to nonconforming finite elements and weak Galerkin methods. 
    more » « less
  4. Summary In this paper, we propose and analyze two stabilized mixed finite element methods for the dual‐porosity‐Stokes model, which couples the free flow region and microfracture‐matrix system through four interface conditions on an interface. The first stabilized mixed finite element method is a coupled method in the traditional format. Based on the idea of partitioned time stepping, the four interface conditions, and the mass exchange terms in the dual‐porosity model, the second stabilized mixed finite element method is decoupled in two levels and allows a noniterative splitting of the coupled problem into three subproblems. Due to their superior conservation properties and convenience of the computation of flux, mixed finite element methods have been widely developed for different types of subsurface flow problems in porous media. For the mixed finite element methods developed in this article, no Lagrange multiplier is used, but an interface stabilization term with a penalty parameter is added in the temporal discretization. This stabilization term ensures the numerical stability of both the coupled and decoupled schemes. The stability and the convergence analysis are carried out for both the coupled and decoupled schemes. Three numerical experiments are provided to demonstrate the accuracy, efficiency, and applicability of the proposed methods. 
    more » « less
  5. The continuity of the position-vector gradients at the nodal points of a finite element mesh does not always ensure the continuity of the gradients at the element interfaces. Discontinuity of the gradients at the interface not only adversely affects the quality of the simulation results, but can also lead to computer models that do not properly represent realistic physical system behaviors, particularly in the case of soft and fluid material applications. In this study, the absolute nodal coordinate formulation (ANCF) finite elements are used to define general curvature-continuity conditions that allow for eliminating or minimizing the discontinuity of the position gradients at the element interface. For the ANCF solid element, with four-node surfaces, it is shownthat continuity of the gradients tangent to an arbitrary point on a surface is ensured as the result of the continuity of the gradients at the nodal points. The general ANCF continuity conditions are applicable to both reference-configuration straight and curved geometries. These conditions are formulated without the need for using the computer-aided-design knot vector and knot multiplicity, which do not account properly for the concept of system degrees of freedom. The ANCF curvature-continuity conditions are written in terms of constant geometric coefficients obtained using the matrix of position-vector gradients that defines the reference-configuration geometry. The formulation of these conditions is demonstrated using the ANCF fully parameterized three-dimensional solid and tetrahedral elements, which employ a complete set of position gradients as nodal coordinates. Numerical results are presented in order to examine the effect of applying the curvature-continuity conditions on achieving a higher degree of smoothness at the element interfaces in the case of soft and fluid materials. 
    more » « less