skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Spine biomechanical testing methodologies: The controversy of consensus vs scientific evidence
Abstract Biomechanical testing methodologies for the spine have developed over the past 50 years. During that time, there have been several paradigm shifts with respect to techniques. These techniques evolved by incorporating state‐of‐the‐art engineering principles, in vivo measurements, anatomical structure‐function relationships, and the scientific method. Multiple parametric studies have focused on the effects that the experimental technique has on outcomes. As a result, testing methodologies have evolved, but there are no standard testing protocols, which makes the comparison of findings between experiments difficult and conclusions about in vivo performance challenging. In 2019, the international spine research community was surveyed to determine the consensus on spine biomechanical testing and if the consensus opinion was consistent with the scientific evidence. More than 80 responses to the survey were received. The findings of this survey confirmed that while some methods have been commonly adopted, not all are consistent with the scientific evidence. This review summarizes the scientific literature, the current consensus, and the authors' recommendations on best practices based on the compendium of available evidence.  more » « less
Award ID(s):
1751212
PAR ID:
10452042
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
JOR SPINE
Volume:
4
Issue:
1
ISSN:
2572-1143
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract In vitro mechanical testing of intervertebral discs is crucial for basic science and pre‐clinical testing. Generally, these tests aim to replicate in vivo conditions, but simplifications are necessary in specimen preparation and mechanical testing due to complexities in both structure and the loading conditions required to replicate in vivo conditions. There has been a growing interest in developing a consensus of testing protocols within the spine community to improve comparison of results between studies. The objective of this study was to perform axial compression experiments on bovine bone‐disc‐bone specimens at three institutions. No differences were observed between testing environment being air, with PBS soaked gauze, or a PBS bath (P > .206). A 100‐fold increase in loading rate resulted in a small (2%) but significant increase in compressive mechanics (P < .017). A 7% difference in compressive stiffness between Labs B and C was eliminated when values were adjusted for test system compliance. Specimens tested at Lab A, however, were found to be stiffer than specimens from Lab B and C. Even after normalizing for disc geometry and adjusting for system compliance, an ∼35% difference was observed between UK based labs (B and C) and the USA based lab (A). Large differences in specimen stiffness may be due to genetic differences between breeds or in agricultural feed and use of growth hormones; highlighting significant challenges in comparing mechanics data across studies. This research provides a standardized test protocol for the comparison of spinal specimens and provides steps towards understanding how location and test set‐up may affect biomechanical results. 
    more » « less
  2. Abstract BackgroundStalk lodging (the premature breaking of plant stalks or stems prior to harvest) is a persistent agricultural problem that causes billions of dollars in lost yield every year. Three-point bending tests, and rind puncture tests are common biomechanical measurements utilized to investigate crops susceptibility to lodging. However, the effect of testing rate on these biomechanical measurements is not well understood. In general, biological specimens (including plant stems) are well known to exhibit viscoelastic mechanical properties, thus their mechanical response is dependent upon the rate at which they are deflected. However, there is very little information in the literature regarding the effect of testing rate (aka displacement rate) on flexural stiffness, bending strength and rind puncture measurements of plant stems. ResultsFully mature and senesced maize stems and wheat stems were tested in three-point bending at various rates. Maize stems were also subjected to rind penetration tests at various rates. Testing rate had a small effect on flexural stiffness and bending strength calculations obtained from three-point bending tests. Rind puncture measurements exhibited strong rate dependent effects. As puncture rate increased, puncture force decreased. This was unexpected as viscoelastic materials typically show an increase in resistive force when rate is increased. ConclusionsTesting rate influenced three-point bending test results and rind puncture measurements of fully mature and dry plant stems. In green stems these effects are expected to be even larger. When conducting biomechanical tests of plant stems it is important to utilize consistent span lengths and displacement rates within a study. Ideally samples should be tested at a rate similar to what they would experience in-vivo. 
    more » « less
  3. Abstract Tendons are critical for the biomechanical function of joints. Tendons connect muscles to bones and allow for the transmission of muscle forces to facilitate joint motion. Therefore, characterizing the tensile mechanical properties of tendons is important for the assessment of functional tendon health and efficacy of treatments for acute and chronic injuries. In this guidelines paper, we review methodological considerations, testing protocols, and key outcome measures for mechanical testing of tendons. The goal of the paper is to present a simple set of guidelines to the nonexpert seeking to perform tendon mechanical tests. The suggested approaches provide rigorous and consistent methodologies for standardized biomechanical characterization of tendon and reporting requirements across laboratories. 
    more » « less
  4. Scientific knowledge has been under attack recently, especially during and from the Trump administration. This article discusses the value of research in social studies of science in relation to scientific practice and post‐truth attacks on science. This literature analyzes the expert work and social values that enter into the production of evidence, the development and testing of methods, and the construction of theoretical and epistemological frames for connecting evidence, methods, and methodologies. Although researchers in this area argue that there are politics in science, this article demonstrates that their analyses of the processes of adjudicating evidence and epistemologies contribute to science. In contrast, post‐truth attacks on scientific expertise exemplify a particular kind of politics aimed at supporting a particular group's political and economic interests. 
    more » « less
  5. There is a growing consensus that solutions to complex science and engineering problems require novel methodologies that are able to integrate traditional physics-based modeling approaches with state-of-the-art machine learning (ML) techniques. This paper provides a structured overview of such techniques. Application-centric objective areas for which these approaches have been applied are summarized, and then classes of methodologies used to construct physics-guided ML models and hybrid physics-ML frameworks are described. We then provide a taxonomy of these existing techniques, which uncovers knowledge gaps and potential crossovers of methods between disciplines that can serve as ideas for future research. 
    more » « less