We discuss two doubly degenerate Cahn–Hilliard (DDCH) models for isotropic surface diffusion. Degeneracy is introduced in both the mobility function and a restriction function associated to the chemical potential. Our computational results suggest that the restriction functions yield more accurate approximations of surface diffusion. We consider a slight generalization of a model that has appeared before, which is non‐variational, meaning there is no clear energy that is dissipated along the solution trajectories. We also introduce a new variational and, more precisely, energy dissipative model, which can be related to the generalized non‐variational model. For both models, we use formal matched asymptotics to show the convergence to the sharp‐interface limit of surface diffusion.
more »
« less
Doubly degenerate diffuse interface models of anisotropic surface diffusion
We extend the doubly degenerate Cahn–Hilliard (DDCH) models for isotropic surface diffusion, which yield more accurate approximations than classical degenerate Cahn–Hilliard (DCH) models, to the anisotropic case. We consider both weak and strong anisotropies and demonstrate the capabilities of the approach for these cases numerically. The proposed model provides a variational and energy dissipative approach for anisotropic surface diffusion, enabling large‐scale simulations with material‐specific parameters.
more »
« less
- Award ID(s):
- 2012634
- PAR ID:
- 10452158
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Mathematical Methods in the Applied Sciences
- Volume:
- 44
- Issue:
- 7
- ISSN:
- 0170-4214
- Page Range / eLocation ID:
- p. 5406-5417
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In this paper we construct a novel discretization of the Cahn-Hilliard equation coupled with the Navier-Stokes equations. The Cahn-Hilliard equation models the separation of a binary mixture. We construct a very simple time integration scheme for simulating the Cahn-Hilliard equation, which is based on splitting the fourth-order equation into two second-order Helmholtz equations. We combine the Cahn-Hilliard equation with the Navier-Stokes equations to simulate phase separation in a two-phase fluid flow in two dimensions. The scheme conserves mass and momentum and exhibits consistency between mass and momentum, allowing it to be used with large density ratios. We introduce a novel discretization of the surface tension force from the phase-field variable that has finite support around the transition region. The model has a parameter that allows it to transition from a smoothed continuum surface force to a fully sharp interface formulation. We show that our method achieves second-order accuracy, and we compare our method to previous work in a variety of experiments.more » « less
-
null (Ed.)We construct a numerical scheme based on the scalar auxiliary variable (SAV) approach in time and the MAC discretization in space for the Cahn–Hilliard–Navier–Stokes phase- field model, prove its energy stability, and carry out error analysis for the corresponding Cahn–Hilliard–Stokes model only. The scheme is linear, second-order, unconditionally energy stable and can be implemented very efficiently. We establish second-order error estimates both in time and space for phase-field variable, chemical potential, velocity and pressure in different discrete norms for the Cahn–Hilliard–Stokes phase-field model. We also provide numerical experiments to verify our theoretical results and demonstrate the robustness and accuracy of our scheme.more » « less
-
Abstract We propose two mass and heat energy conservative, unconditionally stable, decoupled numerical algorithms for solving the Cahn–Hilliard–Navier–Stokes–Darcy–Boussinesq system that models thermal convection of two‐phase flows in superposed free flow and porous media. The schemes totally decouple the computation of the Cahn–Hilliard equation, the Darcy equations, the heat equation, the Navier–Stokes equations at each time step, and thus significantly reducing the computational cost. We rigorously show that the schemes are conservative and energy‐law preserving. Numerical results are presented to demonstrate the accuracy and stability of the algorithms.more » « less
-
In this paper, we consider numerical approximations for solving the anisotropic Cahn–Hilliard model. We combine the Scalar Auxiliary Variable (SAV) approach with the stabilization technique to arrive at a novel Stabilized-SAV approach, where three linear stabilization terms, which are shown to be crucial to remove the oscillations caused by the anisotropic coefficient, are added to enhance the stability while keeping the required accuracy. The schemes are very easy-to-implement and fast in the sense that all nonlinear terms are treated in a semi-explicit way, and one only needs to solve three decoupled linear equations with constant coefficients at each time step. We further prove the unconditional energy stabilities rigorously and present numerous 2D and 3D numerical simulations to demonstrate the stability and accuracy.more » « less
An official website of the United States government
