skip to main content


Title: Genetic evidence for the origin of Aedes aegypti , the yellow fever mosquito, in the southwestern Indian Ocean
Abstract

Aedes aegyptiis among the best‐studied mosquitoes due to its critical role as a vector of human pathogens and ease of laboratory rearing. Until now, this species was thought to have originated in continental Africa, and subsequently colonized much of the world following the establishment of global trade routes. However, populations of this mosquito on the islands in the southwestern Indian Ocean (SWIO), where the species occurs with its nearest relatives referred to as the Aegypti Group, have received little study. We re‐evaluated the evolutionary history ofAe. aegyptiand these relatives, using three data sets: nucleotide sequence data, 18,489 SNPs and 12 microsatellites. We found that: (a) the Aegypti Group diverged 16 MYA (95% HPD: 7–28 MYA) from its nearest African/Asian ancestor; (b) SWIO populations ofAe. aegyptiare basal to continental African populations; (c) after diverging 7 MYA (95% HPD: 4–15 MYA) from its nearest formally described relative (Ae. mascarensis),Ae. aegyptimoved to continental Africa less than 85,000 years ago, where it recently (<1,000 years ago) split into two recognized subspeciesAe. aegypti formosusand a human commensal,Ae. aegypti aegypti; (d) the Madagascar samples form a clade more distant from all otherAe. aegyptithan the named speciesAe. mascarensis, implying that Madagascar may harbour a new cryptic species; and (e) there is evidence of introgression betweenAe. mascarensisandAe. aegyption Réunion, and between the two subspecies elsewhere in the SWIO, a likely consequence of recent introductions of domesticAe. aegypti aegyptifrom Asia.

 
more » « less
Award ID(s):
1754376
NSF-PAR ID:
10452349
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Molecular Ecology
Volume:
29
Issue:
19
ISSN:
0962-1083
Page Range / eLocation ID:
p. 3593-3606
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Aim

    To investigate the structure and rate of gene flow among populations of habitat‐specialized species to understand the ecological and evolutionary processes underpinning their population dynamics and historical demography, including speciation and extinction.

    Location

    Peruvian and Argentine Andes.

    Taxon

    Two subspecies of torrent duck (Merganetta armata).

    Methods

    We sampled 156 individuals in Peru (M. a. leucogenis;Chillón River,n = 57 and Pachachaca River,n = 49) and Argentina (M. a. armata;Arroyo Grande River,n = 33 and Malargüe River,n = 17), and sequenced the mitochondrial DNA (mtDNA) control region to conduct coarse and fine‐scale demographic analyses of population structure. Additionally, to test for differences between subspecies, and across genetic markers with distinct inheritance patterns, a subset of individuals (Peru,n = 10 and Argentina,n = 9) was subjected to partial genome resequencing, obtaining 4,027 autosomal and 189 Z‐linked double‐digest restriction‐associated DNA sequences.

    Results

    Haplotype and nucleotide diversities were higher in Peru than Argentina across all markers. Peruvian and Argentine subspecies showed concordant species‐level differences (ΦSTmtDNA = 0.82; ΦSTautosomal = 0.30; ΦSTZ chromosome = 0.45), including no shared mtDNA haplotypes. Demographic parameters estimated for mtDNA using IM and IMa2 analyses, and for autosomal markers using∂a∂i(isolation‐with‐migration model), supported an old divergence (mtDNA = 600,000 years before present (ybp), 95% HPD range = 1.2 Mya to 200,000 ybp; and autosomal∂a∂i = 782,490 ybp), between the two subspecies, characteristic of deeply diverged lineages. The populations were well‐differentiated in Argentina but moderately differentiated in Peru, with low unidirectional gene flow in each country.

    Main conclusions

    We suggest that the South American Arid Diagonal was preexisting and remains a current phylogeographic barrier between the ranges of the two torrent duck subspecies, and the adult territoriality and breeding site fidelity to the rivers define their population structure.

     
    more » « less
  2. Abstract

    Invasive mosquitoes are expanding their ranges into new geographic areas and interacting with resident mosquito species. Understanding how novel interactions can affect mosquito population dynamics is necessary to predict transmission risk at invasion fronts. Mosquito life‐history traits are extremely sensitive to temperature, and this can lead to temperature‐dependent competition between competing invasive mosquito species. We explored temperature‐dependent competition betweenAedes aegyptiandAnopheles stephensi, two invasive mosquito species whose distributions overlap in India, the Middle East, and North Africa, whereAn. stephensiis currently expanding into the endemic range ofAe. aegypti. We followed mosquito cohorts raised at different intraspecific and interspecific densities across five temperatures (16–32°C) to measure traits relevant for population growth and to estimate species’ per capita growth rates. We then used these growth rates to derive each species’ competitive ability at each temperature. We find strong evidence for asymmetric competition at all temperatures, withAe. aegyptiemerging as the dominant competitor. This was primarily because of differences in larval survival and development times across all temperatures that resulted in a higher estimated intrinsic growth rate and competitive tolerance estimate forAe. aegypticompared toAn. stephensi. The spread ofAn. stephensiinto the African continent could lead to urban transmission of malaria, an otherwise rural disease, increasing the human population at risk and complicating malaria elimination efforts. Competition has resulted in habitat segregation of other invasive mosquito species, and our results suggest that it may play a role in determining the distribution ofAn. stephensiacross its invasive range.

     
    more » « less
  3. Few studies have quantified the extent of genetic differentiation within widely distributed polytypic African bird species with disjunct ranges. Current knowledge indicates that high levels of genetic differentiation are found for such lineages but generalization of the pattern requires further comparisons with other co‐distributed taxa. We assessed the extent of phylogeographical structure across the range of the Olive WoodpeckerDendropicos griseocephalususing mitochondrial and nuclear intron data. The Olive Woodpecker occupies the forests of Central (Dendropicos griseocephalus ruwenzori) and Eastern (Dendropicos g. kilimensis) Africa, with a disjunct morphological lineage (Dendropicos g. griseocephalus) occurring in southern Africa. Each of the subspecies lineages can be diagnosed using morphology. Phylogenetic analyses of our sequence data recovered three monophyletic lineages withkilimensissister toruwenzori, andgriseocephalusas sister to the clade uniting these two taxa. Molecular species delimitation methods and estimates of gene flow under the isolation‐with‐migration model suggest that the clade uniting the central and eastern subspecies may be recognized as distinct at the species level from the nominate subspecies, which is restricted to southern Africa. We conclude thatD. griseocephalus(Boddaert, 1783) andD. ruwenzori(Sharpe, 1902) (including subspecieskilimensis) should be considered full species. The biogeographical pattern we uncover for the Olive Woodpecker differs from that of other co‐distributed widespread species both in terms of the order of sequence divergence of lineages occupying different areas of endemism in Africa, and in the timing of divergence, being younger (0.5–0.7 mya BP) than that recovered for the co‐distributed Square‐tailed DrongoDicrurus ludwigii(0.9–1.6 mya BP).

     
    more » « less
  4. Abstract

    Africa has undergone a progressive aridification during the last 20 My that presumably impacted organisms and fostered the evolution of life history adaptations. We test the hypothesis that shift to living in ant nests and feeding on ant brood by larvae of phyto‐predaceousLepidochrysopsbutterflies was an adaptive response to the aridification of Africa that facilitated the subsequent radiation of butterflies in this genus. Using anchored hybrid enrichment we constructed a time‐calibrated phylogeny forLepidochrysopsand its closest, non‐parasitic relatives in theEuchrysopssection (Poloyommatini). We estimated ancestral areas across the phylogeny with process‐based biogeographical models and diversification rates relying on time‐variable and clade‐heterogeneous birth‐death models. TheEuchrysopssection originated with the emerging Miombo woodlands about 22 million years ago (Mya) and spread to drier biomes as they became available in the late Miocene. The diversification of the non‐parasitic lineages decreased as aridification intensified around 10 Mya, culminating in diversity decline. In contrast, the diversification of the phyto‐predaceousLepidochrysopslineage proceeded rapidly from about 6.5 Mya when this unusual life history likely first evolved. The Miombo woodlands were the cradle for diversification of theEuchrysopssection, and our findings are consistent with the hypothesis that aridification during the Miocene selected for a phyto‐predaceous life history in species ofLepidochrysops, with ant nests likely providing caterpillars a safe refuge from fire and a source of food when vegetation was scarce.

     
    more » « less
  5. Abstract

    The genusBidens(Compositae) comprisesc. 230 species distributed across five continents, with the 41 Polynesian species displaying the greatest ecomorphological variation in the group. However, the genus has had a long and complicated taxonomic history, and its phylogenetic and biogeographic history are poorly understood. To resolve the evolutionary history of the PolynesianBidens, 152 individuals representing 91 species were included in this study, including 39 of the 41 described species from Polynesia. Four chloroplast and two nuclear DNA markers were utilized to estimate phylogenetic relationships, divergence times, and biogeographic history.Bidenswas found to be polyphyletic withinCoreopsis, consistent with previous assessments. The Polynesian radiation was resolved as monophyletic, with the initial dispersal into the Pacific possibly from South America to either the Hawaiian or Marquesas Islands. From the Marquesas,Bidensdispersed to the Society Islands, and ultimately to the Austral Islands. The initial diversification of the crown group in the Pacific is estimated to have occurred ~1.63 mya (0.74–2.72, 95% HPD), making PolynesianBidensamong the youngest and most rapid plant diversification events documented in the Pacific. Our findings suggest that relatively rare long‐distance dispersal and founder‐event speciation, coupled with subsequent loss of dispersal potential and within‐island speciation, can explain the repeated and explosive adaptive radiation ofBidensthroughout the archipelagoes of Polynesia.

     
    more » « less