Summary Water scarcity, resulting from climate change, poses a significant threat to ecosystems.Syntrichia ruralis, a dryland desiccation‐tolerant moss, provides valuable insights into survival of water‐limited conditions.We sequenced the genome ofS. ruralis, conducted transcriptomic analyses, and performed comparative genomic and transcriptomic analyses with existing genomes and transcriptomes, including with the close relativeS. caninervis. We took a genetic approach to characterize the role of anS. ruralistranscription factor, identified in transcriptomic analyses, inArabidopsis thaliana.The genome was assembled into 12 chromosomes encompassing 21 169 protein‐coding genes. Comparative analysis revealed copy number and transcript abundance differences in known desiccation‐associated gene families, and highlighted genome‐level variation among species that may reflect adaptation to different habitats. A significant number of abscisic acid (ABA)‐responsive genes were found to be negatively regulated by a MYB transcription factor (MYB55) that was upstream of theS. ruralisortholog of ABA‐insensitive 3 (ABI3). We determined that this conserved MYB transcription factor, uncharacterized inArabidopsis, acts as a negative regulator of an ABA‐dependent stress response inArabidopsis.The new genomic resources from this emerging model moss offer novel insights into how plants regulate their responses to water deprivation.
more »
« less
To dry perchance to live: Insights from the genome of the desiccation‐tolerant biocrust moss Syntrichia caninervis
Summary With global climate change, water scarcity threatens whole agro/ecosystems. The desert mossSyntrichia caninervis, an extremophile, offers novel insights into surviving desiccation and heat. The sequencedS. caninervisgenome consists of 13 chromosomes containing 16 545 protein‐coding genes and 2666 unplaced scaffolds. Syntenic relationships within theS.caninervisandPhyscomitrellapatensgenomes indicate theS. caninervisgenome has undergone a single whole genome duplication event (compared to two forP. patens) and evidence suggests chromosomal or segmental losses in the evolutionary history ofS. caninervis. The genome contains a large sex chromosome composed primarily of repetitive sequences with a large number ofCopiaandGypsyelements. Orthogroup analyses revealed an expansion ofELIPgenes encoding proteins important in photoprotection. The transcriptomic response to desiccation identified four structural clusters of novel genes. The genomic resources established for this extremophile offer new perspectives for understanding the evolution of desiccation tolerance in plants.
more »
« less
- PAR ID:
- 10452792
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- The Plant Journal
- Volume:
- 105
- Issue:
- 5
- ISSN:
- 0960-7412
- Page Range / eLocation ID:
- p. 1339-1356
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
SUMMARY Extreme dryness is lethal for nearly all plants, excluding the so‐called resurrection plants, which evolved vegetative desiccation tolerance (VDT) by recruiting genes common in most plants. To better understand the evolution of VDT, we generated chromosome‐level assemblies and improved genome annotations of twoSelaginellaspecies with contrasting abilities to survive desiccation. We identified genomic features and critical mechanisms associated with VDT through sister‐group comparative genomics integrating multi‐omics data. Our findings indicate thatSelaginellaevolved VDT through the expansion of some stress protection‐related gene families and the contraction of senescence‐related genes. Comparative analyses revealed that desiccation‐tolerantSelaginellaspecies employ a combination of constitutive and inducible protection mechanisms to survive desiccation. We show that transcriptional priming of stress tolerance‐related genes and accumulation of flavonoids in unstressed plants are hallmarks of VDT inSelaginella. During water loss, the resurrectionSelaginellainduces phospholipids and glutathione metabolism, responses that are missing in the desiccation‐sensitive species. Additionally, gene regulatory network analyses indicate the suppression of growth processes as a major component of VDT. This study presents novel perspectives on how gene dosage impacts crucial protective mechanisms and the regulation of central processes to survive extreme dehydration.more » « less
-
SUMMARY Resurrection plants can survive prolonged life without water (anhydrobiosis) in regions with seasonal drying. This desiccation tolerance requires the coordination of numerous cellular processes across space and time, and individual plant tissues face unique constraints related to their function. Here, we analyzed the complex, octoploid genome of the model resurrection plantCraterostigma(C. plantagineum), and surveyed spatial and temporal expression dynamics to identify genetic elements underlying desiccation tolerance. Homeologous genes within theCraterostigmagenome have divergent expression profiles, suggesting the subgenomes contribute differently to desiccation tolerance traits. TheCraterostigmagenome contains almost 200 tandemly duplicated early light‐induced proteins, a hallmark trait of desiccation tolerance, with massive upregulation under water deficit. We identified a core network of desiccation‐responsive genes across all tissues, but observed almost entirely unique expression dynamics in each tissue during recovery. Roots and leaves have differential responses related to light and photoprotection, autophagy and nutrient transport, reflecting their divergent functions. Our findings highlight a universal set of likely ancestral desiccation tolerance mechanisms to protect cellular macromolecules under anhydrobiosis, with secondary adaptations related to tissue function.more » « less
-
PREMISEDesiccation tolerance (DT) is a widespread phenomenon among land plants, and variable ecological strategies for DT are likely to exist. UsingSyntrichia caninervis, a dryland moss and model system used in DT studies, we hypothesized that DT is lowest in juvenile (protonemal) tissues, highest in asexual reproductive propagules (gemmae), and intermediate in adults (shoots). We tested the long‐standing hypothesis of an inherent constitutive strategy of DT in this species. METHODSPlants were rapidly dried to levels of equilibrating relative humidity (RHeq) ranging from 0 to 93%. Postrehydration recovery was assessed using chlorophyll fluorescence, regeneration rates, and visual tissue damage. For each life phase, we estimated the minimum rate of drying (RoDmin) atRHeq= 42% that did not elicit damage 24 h postrehydration. RESULTSDT strategy varied with life phase, with adult shoots having the lowestRoDmin(10‒25 min), followed by gemmae (3‒10 h) and protonema (14‒20 h). Adult shoots exhibited no detectable damage 24 h postrehydration following a rapid‐dry only at the highestRHeqused (93%), but when dried to lower RHs the response declined to <50% of control fluorescence values. Notably, immediately following rehydration (0 h postrehydration), shoots were damaged below control levels of fluorescence regardless of theRHeq, thus implicating damage. CONCLUSIONSLife phases of the mossS. caninervishad a range of strategies from near constitutive (adult shoots) to demonstrably inducible (protonema). A new response variable for assessing degree of DT is introduced as the minimum rate of drying from which full recovery occurs.more » « less
-
Ultraviolet radiation (UVR) is a major environmental stressor for terrestrial plants. Here we investigated genetic responses to acute broadband UVR exposure in the highly desiccation-tolerant mosses Syntrichia caninervis and Syntrichia ruralis , using a comparative transcriptomics approach. We explored whether UVR protection is physiologically plastic and induced by UVR exposure, addressing the following questions: (1) What is the timeline of changes in the transcriptome with acute UVR exposure in these two species? (2) What genes are involved in the UVR response? and (3) How do the two species differ in their transcriptomic response to UVR? There were remarkable differences between the two species after 10 and 30 min of UVR exposure, including no overlap in significantly differentially abundant transcripts (DATs) after 10 min of UVR exposure and more than twice as many DATs for S. caninervis as there were for S. ruralis . Photosynthesis-related transcripts were involved in the response of S. ruralis to UVR, while membrane-related transcripts were indicated in the response of S. caninervis . In both species, transcripts involved in oxidative stress and those important for desiccation tolerance (such as late embryogenesis abundant genes and early light-inducible protein genes) were involved in response to UVR, suggesting possible roles in UVR tolerance and cross-talk with desiccation tolerance in these species. The results of this study suggest potential UVR-induced responses that may have roles outside of UVR tolerance, and that the response to URV is different in these two species, perhaps a reflection of adaptation to different environmental conditions.more » « less
An official website of the United States government
