skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Revisiting the Sulfur‐Water Chemical System in the Middle Atmosphere of Venus
Abstract Sulfur‐water chemistry plays an important role in the middle atmosphere of Venus. Ground‐based observations have found that simultaneously observed SO2and H2O at ~64 km vary with time and are temporally anticorrelated. To understand these observations, we explore the sulfur‐water chemical system using a one‐dimensional chemistry‐diffusion model. We find that SO2and H2O mixing ratios above the clouds are highly dependent on mixing ratios of the two species at the middle cloud top (58 km). The behavior of sulfur‐water chemical system can be classified into three regimes, but there is no abrupt transition among these regimes. In particular, there is no bifurcation behavior as previously claimed. We also find that the SO2self‐shielding effect causes H2O above the clouds to respond to the middle cloud top in a nonmonotonic fashion. Through comparison with observations, we find that mixing ratio variations at the middle cloud top can explain the observed variability of SO2and H2O. The sulfur‐water chemistry in the middle atmosphere is responsible for the H2O‐SO2anticorrelation at 64 km. Eddy transport change alone cannot explain the variations of both species. These results imply that variations of species abundance in the middle atmosphere are significantly influenced by the lower atmospheric processes. Continued ground‐based measurements of the coevolution of SO2and H2O above the clouds and new spacecraft missions will be crucial for uncovering the complicated processes underlying the interaction among the lower atmosphere, the clouds, and the middle atmosphere of Venus.  more » « less
Award ID(s):
1740921
PAR ID:
10452880
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Planets
Volume:
125
Issue:
8
ISSN:
2169-9097
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Since January 2012, we have been monitoring the behavior of sulfur dioxide and water on Venus, using the Texas Echelon Cross-Echelle Spectrograph imaging spectrometer at the NASA InfraRed Telescope Facility (IRTF, Mauna Kea Observatory). Here, we present new data recorded in February and April 2019 in the 1345 cm −1 (7.4 μ m) spectral range, where SO 2 , CO 2 , and HDO (used as a proxy for H 2 O) transitions were observed. The cloud top of Venus was probed at an altitude of about 64 km. As in our previous studies, the volume mixing ratio (vmr) of SO 2 was estimated using the SO 2 /CO 2 line depth ratio of weak transitions; the H 2 O volume mixing ratio was derived from the HDO/CO 2 line depth ratio, assuming a D/H ratio of 200 times the Vienna standard mean ocean water. As reported in our previous analyses, the SO 2 mixing ratio shows strong variations with time and also over the disk, showing evidence for the formation of SO 2 plumes with a lifetime of a few hours; in contrast, the H 2 O abundance is remarkably uniform over the disk and shows moderate variations as a function of time. We have used the 2019 data in addition to our previous dataset to study the long-term variations of SO 2 and H 2 O. The data reveal a long-term anti-correlation with a correlation coefficient of −0.80; this coefficient becomes −0.90 if the analysis is restricted to the 2014–2019 time period. The statistical analysis of the SO 2 plumes as a function of local time confirms our previous result with a minimum around 10:00 and two maxima near the terminators. The dependence of the SO 2 vmr with respect to local time shows a higher abundance at the evening terminator with respect to the morning. The dependence of the SO 2 vmr with respect to longitude exhibits a broad maximum at 120–200° east longitudes, near the region of Aphrodite Terra. However, this trend has not been observed by other measurements and has yet to be confirmed. 
    more » « less
  2. Abstract Venus is an exceptional natural experiment to test our understanding of atmospheric sulfur chemistry. Previous modeling efforts have focused on understanding either the middle or lower atmosphere. In this work, we performed the first full atmosphere analysis of the chemical transport processes on Venus from the surface to 110 km using a 1‐D diffusion model with photochemistry. We focused on the cycling of chemical species between the upper and lower atmospheres and interactions between distinct species groups including SO, CO + OCS, chlorides, NO, O, and S. We tested different eddy diffusivity profiles and investigated their influences on the vertical profiles of important species. We find that the assumed boundary conditions in previous models strongly impacted their simulation results. This has a particularly large effect for SO. We find the high SOabundance in the lower atmosphere is readily transported into the middle atmosphere, far exceeding observed values. This implies some yet unknown chemistry or process limiting SOmixing. We summarize outstanding questions raised by this work and note chemical reactions that should be the highest priority for future laboratory studies and ab initio calculations. 
    more » « less
  3. The atmosphere of Venus is characterized by strong superrotation, in which the wind velocities at cloud heights are around 60 times faster than the surface rotation rate. The reasons for this strong superrotation are still not well understood. Motions in the atmosphere below the thick cloud deck are hard to determine remotely and in-situ measurements of the circulation below 40 km altitude are scarce. No model to date has been able to simulate superrotating winds with magnitudes comparable with those measured by entry probes, in the dense atmosphere between the surface and the clouds. However, important information on the dynamics and circulation of Venus' atmosphere can be determined by studying the atmosphere at cloud levels, where there are significantly more measurements than in the sub-cloud region, including the many recent observations made during the Venus Express and Akatsuki missions. In this work we describe a new Venus Middle atmosphere general circulation Model (VMM) to study the dynamics of the atmosphere at cloud altitudes. The model simulates the atmosphere from just below cloud deck to around 95 km altitude. We present simulations using the VMM with a simplified Newtonian cooling radiation scheme. Sensitivity studies have been performed to determine the most appropriate values for model parameters and the model has been validated by comparison with observations, including those from Venus Express and Akatsuki. The validated model provides some constraints on parameters which are poorly measured close to the boundary such as the mean winds and temperatures, and provides a basis for further investigations of the dynamics of Venus' cloud-level atmosphere. In future studies we will also investigate the influence of atmospheric waves, such as Kelvin and Rossby waves, to determine the role they play in generating the poorly-understood cloud-level structure at all latitudes. 
    more » « less
  4. Abstract The accurate representation of cloud droplet number concentration (Nd) is crucial for predicting future climate. However, models often underestimate Ndover the Southern Ocean (SO), where natural sources dominate, and aerosols are composed primarily of marine biogenic sulfate and sea spray. This study uses a range of diverse data sets to evaluate and untangle biases in Energy Exascale Earth System Model version 2 (E3SMv2) simulated clouds, aerosols, and sulfur species. The default E3SMv2 underestimates Ndover SO by a factor of 2 when compared with observations in 3 km‐resolution simulations. Updating the dimethyl sulfide (DMS) emission and chemistry leads to a better agreement between the model and the observations in Ndand boundary layer aerosols, but low biases persist in the free tropospheric aerosol concentrations larger than 70 nm, possibly attributable to insufficient particle growth. Furthermore, updates to DMS emissions and chemistry resulted in reduced vertical DMS concentrations and improved the overall agreement between simulated and observed DMS vertical profiles. Preliminary evaluation also reveals remaining biases in simulated sulfur species, including overestimation in DMS at high latitudes, and in simulated sulfate mass concentration, highlighting the necessity for further efforts to improve the model treatment of relevant processes. 
    more » « less
  5. Abstract Quasi‐random vertical displacement fluctuations, caused by the spectrum of non‐breaking gravity waves, mix the atmosphere, similar to turbulence, which induces significant vertical transport of heat and constituents in the upper atmosphere. Multi‐decade observations of temperature, made between 85 and 100 km with a Na lidar at Colorado State University (CSU, 40.6°N, 105.1°W), are used to derive the seasonal variations of the wave‐induced thermal (KH) and constituent (KWave) diffusivities. Both show strong annual oscillations with maxima in winter, which increase with increasing altitude.KHandKWaveexhibit summer minima of ∼40 and ∼70 m2s−1, respectively, that are approximately constant with altitude. In winter,KHvaries from ∼50 at 85 to ∼180 m2s−1at 100 km, whileKWavevaries from ∼110 at 85 to ∼340 m2s−1at 100 km. These values are much larger than the eddy diffusivity (Kzz∼ 35 m2s−1) predicted for this site by the Whole Atmosphere Community Climate Model. The CSU diffusivities are comparable to similar measurements made at other mid‐latitude mountain sites in both hemispheres, and derived from global observations of atomic O. However, the seasonal variations differ from the O observations, which may reflect differences in wave sources at these sites and the different approaches employed to derive the wave diffusivities. Even so, the CSU results demonstrate that heat and constituent transport by unresolved, non‐breaking gravity waves are important processes that need to be incorporated in global chemistry models to properly characterize the thermal and constituent structure of the upper atmosphere. 
    more » « less