skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Persistence of tri‐trophic interactions in seasonal environments
Abstract The interplay between species interactions and environmental variation is well‐understood for pairwise interactions but not for multi‐trophic interactions. Understanding how such interactions persist in a thermally variable environment is particularly important given that most biodiversity on the planet consists of ectotherms whose body temperature depends on the environmental temperature.Here we present a trait‐based mathematical framework for investigating how tri‐trophic food chains persist in seasonal environments. We report two key findings.First, the persistence of the tri‐trophic interaction is enhanced if species at upper trophic levels (e.g. top predators) are more cold‐adapted than those at lower levels (e.g. basal resources) by virtue of lower thermal optima, wider response breadths and lower mortality within the favourable temperature range. The important implication is that the assembly and persistence of multi‐trophic interactions requires that species at lower trophic levels be somewhat maladapted to their ambient thermal environment, as in the case of recent invasions.Second, differential sensitivity to thermally varying environments provides a mechanistic explanation for the conflict of interest between the intermediate consumer and top predator. The same cold‐adaptations that increase the consumer's ability to increase when rare deter the predator's ability to do so. Thus, being well‐adapted to its thermal environment makes the intermediate consumer better able to acquire resources and avoid predators.We predict that the hierarchy in cold‐adaptation should constrain the number of trophic levels that can be supported in a given thermal environment, and that ectotherm food chain lengths should increase with increasing latitude because larger‐amplitude seasonal fluctuations generate more opportunities for species to diverge in their thermal optima.  more » « less
Award ID(s):
1949796
PAR ID:
10453508
Author(s) / Creator(s):
 ;  ;
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Journal of Animal Ecology
Volume:
90
Issue:
1
ISSN:
0021-8790
Format(s):
Medium: X Size: p. 298-310
Size(s):
p. 298-310
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Human activities have dramatically altered global patterns of nitrogen (N) and phosphorus (P) availability. This pervasive nutrient pollution is changing basal resource quality in food webs, thereby affecting rates of biological productivity and the pathways of energy and material flow to higher trophic levels.Here, we investigate how the stoichiometric quality of basal resources modulates patterns of material flow through food webs by characterizing the effects of experimental N and P enrichment on the trophic basis of macroinvertebrate production and flows of dominant food resources to consumers in five detritus‐based stream food webs.After a pre‐treatment year, each stream received N and P at different concentrations for 2 years, resulting in a unique dissolved N:P ratio (target range from 128:1 to 2:1) for each stream. We combined estimates of secondary production and gut contents analysis to calculate rates of material flow from basal resources to macroinvertebrate consumers in all five streams, during all 3 years of study.Nutrient enrichment resulted in a 1.5× increase in basal resource flows to primary consumers, with the greatest increases from biofilms and wood. Flows of most basal resources were negatively related to resource C:P, indicating widespread P limitation in these detritus‐based food webs. Nutrient enrichment resulted in a greater proportion of leaf litter, the dominant resource flow‐pathway, being consumed by macroinvertebrates, with that proportion increasing with decreasing leaf litter C:P. However, the increase in efficiency with which basal resources were channelled into metazoan food webs was not propagated to macroinvertebrate predators, as flows of prey did not systematically increase following enrichment and were unrelated to basal resource flows.This study suggests that ongoing global increases in N and P supply will increase organic matter flows to metazoan food webs in detritus‐based ecosystems by reducing stoichiometric constraints at basal trophic levels. However, the extent to which those flows are propagated to the highest trophic levels likely depends on responses of individual prey taxa and their relative susceptibility to predation. 
    more » « less
  2. Abstract Environmental change is expected to alter trophic interactions and food web dynamics with consequences for ecosystem structure, function and stability. However, the mechanisms by which environmental change influences top‐down and bottom‐up processes are poorly documented.Here, we examined how environmental change caused by shrub encroachment affects trophic interactions in a dryland. The predator–prey system included an apex canid predator (coyote;Canis latrans), an intermediate canid predator (kit fox;Vulpes macrotis), and two herbivorous lagomorph prey (black‐tailed jackrabbit,Lepus californicus; and desert cottontail,Sylvilagus audubonii) in the Chihuahuan Desert of New Mexico, USA.We evaluated alternative hypotheses for how shrub encroachment could affect habitat use and trophic interactions, including (i) modifying bottom‐up processes by reducing herbaceous forage, (ii) modifying top‐down processes by changing canid space use or the landscape of fear experienced by lagomorph prey and (iii) altering intraguild interactions between the dominant coyote and the intermediate kit fox. We used 7 years of camera trap data collected across grassland‐to‐shrubland gradients under variable precipitation to test our a priori hypotheses within a structural equation modelling framework.Lagomorph prey responded strongly to bottom‐up pulses during years of high summer precipitation, but only at sites with moderate to high shrub cover. This outcome is inconsistent with the hypothesis that bottom‐up effects should be strongest in grasslands because of greater herbaceous food resources. Instead, this interaction likely reflects changes in the landscape of fear because perceived predation risk in lagomorphs is reduced in shrub‐dominated habitats. Shrub encroachment did not directly affect predation pressure on lagomorphs by changing canid site use intensity. However, site use intensity of both canid species was positively associated with jackrabbits, indicating additional bottom‐up effects. Finally, we detected interactions between predators in which coyotes restricted space use of kit foxes, but these intraguild interactions also depended on shrub encroachment.Our findings demonstrate how environmental change can affect trophic interactions beyond traditional top‐down and bottom‐up processes by altering perceived predation risk in prey. These results have implications for understanding spatial patterns of herbivory and the feedbacks that reinforce shrubland states in drylands worldwide. 
    more » « less
  3. Abstract Body size influences an individual's physiology and the nature of its intra‐ and interspecific interactions. Changes in this key functional trait can therefore have important implications for populations as well. For example, among invertebrates, there is typically a positive correlation between female body size and reproductive output. Increasing body size can consequently trigger changes in population density, population structure (e.g. adult to juvenile ratio) and the strength of intraspecific competition.Body size changes have been documented in several species in the Arctic, a region that is warming rapidly. In particular, wolf spiders, one of the most abundant arctic invertebrate predators, are becoming larger and therefore more fecund. Whether these changes are affecting their populations and role within food webs is currently unclear.We investigated the population structure and feeding ecology of the dominant wolf spider speciesPardosa lapponicaat two tundra sites where adult spiders naturally differ in mean body size. Additionally, we performed a mesocosm experiment to investigate how variation in wolf spider density, which is likely to change as a function of body size, influences feeding ecology and its sensitivity to warming.We found that juvenile abundance is negatively associated with female size and that wolf spiders occupied higher trophic positions where adult females were larger. Because female body size is positively related to fecundity inP. lapponica, the unexpected finding of fewer juveniles with larger females suggests an increase in density‐dependent cannibalism as a result of increased intraspecific competition for resources. Higher rates of density‐dependent cannibalism are further supported by the results from our mesocosm experiment, in which individuals occupied higher trophic positions in plots with higher wolf spider densities. We observed no changes in wolf spider feeding ecology in association with short‐term experimental warming.Our results suggest that body size variation in wolf spiders is associated with variation in intraspecific competition, feeding ecology and population structure. Given the widespread distribution of wolf spiders in arctic ecosystems, body size shifts in these predators as a result of climate change could have implications for lower trophic levels and for ecosystem functioning. 
    more » « less
  4. Abstract Changes in seasonality associated with climate warming (e.g. temperature, growing season duration) are likely to alter invertebrate prey biomass and availability in aquatic ecosystems through direct and indirect influences on physiology and phenology, particularly in arctic lakes. However, despite warmer thermal regimes, photoperiod will remain unchanged such that potential shifts resulting from longer and warmer growing seasons could be limited by availability of sunlight, especially at lower trophic levels. Thus, a better understanding of warming effects on invertebrate prey throughout the growing season (e.g. early, peak, late) is important to understand arctic lake food‐web dynamics in a changing climate.Here, we use a multifaceted approach to evaluate prey availability to predators in lakes of arctic Alaska. In a laboratory mesocosm experiment, we measured different metrics of abundance for snails (Lymnaea elodes) and zooplankton (Daphnia middendorffiana) across three time periods (early, mid‐ and late growing season) and across three temperature and photoperiod treatments (control, increased temperature and increased temperature × photoperiod). Additionally, we used generalised additive models and generalised additive mixed‐effects models to relate long‐term empirical observations of zooplankton biomass (1983–2015) to observed temperature regimes in an arctic lake. We then simulated zooplankton biomass for the warmest temperature observations across the growing season to inform likely zooplankton biomass regimes under future change.We observed variable responses by snails and zooplankton across experiments and treatments. Early in the growing season, snail development was accelerated at multiple life stages (e.g. egg and juvenile). In mid‐season, in accordance with warmer temperatures, we observed significantly increasedDaphniaabundances. However, in the late season,Daphniaappeared to be limited by photoperiod. Confirming our experimental results, our models of zooplankton biomass showed an increase of nearly 20% in warmer years. Further, these model estimates could be conservative as the consumptive demand of fishes may increase in warmer years as well.Overall, our results highlight the importance of interactive effects of temperature and seasonality. Based primarily on temperature, we can readily predict the response of fish metabolism in warmer temperatures. However, in this context, we generally require a better understanding of climate‐driven responses of important invertebrate prey resources. Our results suggest invertebrate prey biomass and availability are likely to respond positively with climate change based on temperature and seasonality, as well as proportionally to the metabolic requirements of fish predators. While further research is necessary to understand how other food‐web components will respond climate change, our findings suggest that the fish community at the top of arctic lake food webs will have adequate prey base in a warming climate. 
    more » « less
  5. Abstract Ecosystem engineering is a facilitative interaction that generates bottom‐up extrinsic variability that may increase species coexistence, particularly along a stress/disturbance gradient. American alligators (Alligator mississippiensis) create and maintain ‘alligator ponds’ that serve as dry‐season refuges for other animals. During seasonal water recession, these ponds present an opportunity to examine predictions of the stress‐gradient (SGH) and intermediate disturbance hypotheses (IDH).To test the assumption that engineering would facilitate species coexistence in ponds along a stress gradient (seasonal drying), we modelled fish catch‐per‐unit‐effort (CPUE) in ponds and marshes using a long‐term dataset (1997–2022). Stomach contents (n = 1677 from 46 species) and stable isotopes of carbon and nitrogen (n = 3978 representing 91 taxa) from 2018 to 2019 were used to evaluate effects of engineering on trophic dynamics. We quantified diets, trophic niche areas, trophic positions and basal‐resource use among habitats and between seasons. As environmental stress increases, we used seasonal changes in trophic niche areas as a proxy for competition to examine SGH and IDH.Across long‐term data, fish CPUE increased by a factor of 12 in alligator ponds as the marsh dried. This validates the assumption that ponds are an important dry‐season refuge. We found that 73% of diet shifts occurred during the dry season but that diets differed among habitats in only 11% of comparisons. From wet season to dry season, both stomach contents and stable isotopes revealed changes in niche areas. Direction of change depended on trophic guild but was opposite between stable‐isotope and stomach‐content niches, except for detritivores.Stomach‐content niches generally increased suggesting decreased competition in the dry season consistent with existing theory, but stable‐isotope niches yielded the opposite. This may result from a temporal mismatch with stomach contents reflecting diets over hours, while stable isotopes integrate diet over weeks. Consumptive effects may have a stronger effect than competition on niche areas over longer time intervals.Overall, our results demonstrated that alligators ameliorated dry‐season stress by engineering deep‐water habitats and altering food‐web dynamics. We propose that ecosystem engineers facilitate coexistence at intermediate values of stress/disturbance consistent with predictions of both the SGH and IDH. 
    more » « less