skip to main content


Title: Nitrogen‐fixing trees have no net effect on forest growth in the coterminous United States
Abstract

Nitrogen (N)‐fixing trees fulfil a unique and important biogeochemical role in forests through their ability to convert atmospheric N2gas to plant‐available N. Due to their high N fixation rates, it is often assumed that N‐fixing trees facilitate neighbouring trees and enhance forest growth. This assumption is supported by some local studies but contradicted by others, leaving the overall effect of N‐fixing trees on forest growth unresolved.

Here we use the US Forest Service's Forest Inventory and Analysis database to evaluate the effects of N‐fixing trees on plot‐scale basal area change and individual‐scale neighbouring tree demography across the coterminous US.

First we discuss the average trends. At the plot and individual scales, N‐fixing trees do not affect the relative growth rates of neighbouring trees, but they facilitate recruitment and inhibit survival rates, suggesting that they are drivers of tree turnover in the coterminous US. At the plot scale, N‐fixing trees facilitate the basal area change of non‐fixing neighbours.

In addition to the average trends, there is wide variation in the effect of N‐fixing trees on forest growth, ranging from strong facilitation to strong inhibition. This variation does not show a clear geographical pattern, though it does vary with certain local factors. N‐fixing trees facilitate forest growth when they are likely to be less competitive: under high N deposition and high soil moisture or when neighbouring trees occupy different niches (e.g. high foliar C:N trees and non‐fixing trees).

Synthesis. N‐fixing trees have highly variable effects on forest growth and neighbour demographics across the coterminous US. This suggests that the effect of N‐fixing trees on forest development and carbon storage depends on local factors, which may help reconcile the conflicting results found in previous localized studies on the effect of N‐fixing trees on forest growth.

 
more » « less
NSF-PAR ID:
10453524
Author(s) / Creator(s):
 ;  ;  ;  ;
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Journal of Ecology
Volume:
109
Issue:
2
ISSN:
0022-0477
Page Range / eLocation ID:
p. 877-887
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Most forests are recovering from human land use, making it critical to understand the effect of disturbance on forest recovery. Forests of the eastern United States have a long history of land use, but it is unknown whether historical disturbances have contributed to their transition from ectomycorrhizal (ECM) to arbuscular mycorrhizal (AM) tree dominance. Disturbance may promote nitrogen (N)‐fixing trees in early succession, which can elevate soil N availability even after they die. Higher soil N availability may facilitate the competitive success of AM trees over ECM trees, but such ‘N fixer founder effects’ have not been empirically tested.

    Here, we analysed data from three land‐use disturbances in a temperate forest historically dominated by ECM trees: selective‐cutting (ranging from 0 to 52 m2 ha−1), clear‐cutting and agricultural abandonment. These disturbances occurred at different times, but long‐term data capture 3–7 decades of forest recovery.

    We found that the AM tree fraction in contemporary forests was 2, 4, and 6‐fold higher following selective‐cutting, clear‐cutting and agricultural abandonment, respectively, compared to forest composition in 1934. Across these disturbances we also observed an increasing abundance of the N fixer black locust immediately following disturbance. Using a simulation model parameterized by data from black locust, we estimated historical rates of symbiotic N fixation to understand the relationship between N fixation and AM dominance in individual plots. We found that N fixation was positively associated with the growth of ECM trees generally, and oak and hickory specifically, only following light selective‐cutting (<12 or <18 m2 ha−1basal area extraction, respectively). Following higher levels of selective‐cutting and clear‐cutting, N fixation was positively associated with the growth of AM trees, particularly red maple and tulip poplar. Agricultural abandonment led to AM dominance regardless of N fixation rates.

    Synthesis and applications. Our findings suggest that common land use practices and black locust, a native N fixer, can reduce the dominance of ECM trees. If N fixers are likely to proliferate following disturbance, we might maintain ECM dominance by cutting trees at low densities and by applying prescribed fire to remove N.

     
    more » « less
  2. Abstract

    Tree death due to lightning influences tropical forest carbon cycling and tree community dynamics. However, the distribution of lightning damage among trees in forests remains poorly understood.

    We developed models to predict direct and secondary lightning damage to trees based on tree size, crown exposure and local forest structure. We parameterized these models using data on the locations of lightning strikes and censuses of tree damage in strike zones, combined with drone‐based maps of tree crowns and censuses of all trees within a 50‐ha forest dynamics plot on Barro Colorado Island, Panama.

    The likelihood of a direct strike to a tree increased with larger exposed crown area and higher relative canopy position (emergent > canopy >>> subcanopy), whereas the likelihood of secondary lightning damage increased with tree diameter and proximity to neighbouring trees. The predicted frequency of lightning damage in this mature forest was greater for tree species with larger average diameters.

    These patterns suggest that lightning influences forest structure and the global carbon budget by non‐randomly damaging large trees. Moreover, these models provide a framework for investigating the ecological and evolutionary consequences of lightning disturbance in tropical forests.

    Synthesis. Our findings indicate that the distribution of lightning damage is stochastic at large spatial grain and relatively deterministic at smaller spatial grain (<15 m). Lightning is more likely to directly strike taller trees with large crowns and secondarily damage large neighbouring trees that are closest to the directly struck tree. The results provide a framework for understanding how lightning can affect forest structure, forest dynamics and carbon cycling. The resulting lightning risk model will facilitate informed investigations into the effects of lightning in tropical forests.

     
    more » « less
  3. Abstract

    Plant functional traits are thought to drive biomass production and biogeochemical cycling in tropical forests, but it remains unclear how nitrogen (N)‐fixing legumes influence the functional traits of neighbouring trees and forest‐wide biomass dynamics. Further, the degree to which effects of N‐fixers are density‐dependent and may depend on stem size and spatial scale remains largely unknown.

    Here, we examine 30 years of stem demography data for ~20,000 trees in a lowland tropical forest in Trinidad that span a wide range of functional traits thought to drive above‐ground biomass (AGB) dynamics.

    These forests show positive but decreasing long‐term net AGB accumulation resulting from constant average productivity but increasing mortality of non‐fixing trees over time. We find that high abundance of N‐fixing trees is associated with compositional shifts in non‐fixer functional traits that confer lower competitive performance and biomass accumulation. Across tree size classes, most interactions between N‐fixers and non‐fixers were negative, density‐dependent, and strongest at smaller spatial scales.

    Synthesis. Overall, our findings suggest that local trait‐based interactions between N‐fixing and non‐fixing trees can influence long‐term carbon accumulation in tropical forests.

     
    more » « less
  4. Abstract

    Quantifying human impacts on the nitrogen (N) cycle and investigating natural ecosystem N cycling depend on the magnitude of inputs from natural biological nitrogen fixation (BNF). Here, we present two bottom‐up approaches to quantify tree‐based symbiotic BNF based on forest inventory data across the coterminous United States and SE Alaska. For all major N‐fixing tree genera, we quantify BNF inputs using (1) ecosystem N accretion rates (kg N ha−1yr−1) scaled with spatial data on tree abundance and (2) percent of N derived from fixation (%Ndfa) scaled with tree N demand (from tree growth rates and stoichiometry). We estimate that trees fix 0.30–0.88 Tg N yr−1across the study area (1.4–3.4 kg N ha−1yr−1). Tree‐based N fixation displays distinct spatial variation that is dominated by two genera,Robinia(64% of tree‐associated BNF) andAlnus(24%). The third most important genus,Prosopis, accounted for 5%. Compared to published estimates of other N fluxes, tree‐associated BNF accounted for 0.59 Tg N yr−1, similar to asymbiotic (0.37 Tg N yr−1) and understory symbiotic BNF (0.48 Tg N yr−1), while N deposition contributed 1.68 Tg N yr−1and rock weathering 0.37 Tg N yr−1. Overall, our results reveal previously uncharacterized spatial patterns in tree BNF that can inform large‐scale N assessments and serve as a model for improving tree‐based BNF estimates worldwide. This updated, lower BNF estimate indicates a greater ratio of anthropogenic to natural N inputs, suggesting an even greater human impact on the N cycle.

     
    more » « less
  5. Summary

    Shifts in the age or turnover time of non‐structural carbohydrates (NSC) may underlie changes in tree growth under long‐term increases in drought stress associated with climate change. But NSC responses to drought are challenging to quantify, due in part to large NSC stores in trees and subsequently long response times of NSC to climate variation.

    We measured NSC age (Δ14C) along with a suite of ecophysiological metrics inPinus edulistrees experiencing either extreme short‐term drought (−90% ambient precipitation plot, 2020–2021) or a decade of severe drought (−45% plot, 2010–2021). We tested the hypothesis that carbon starvation – consumption exceeding synthesis and storage – increases the age of sapwood NSC.

    One year of extreme drought had no impact on NSC pool size or age, despite significant reductions in predawn water potential, photosynthetic rates/capacity, and twig and needle growth. By contrast, long‐term drought halved the age of the sapwood NSC pool, coupled with reductions in sapwood starch concentrations (−75%), basal area increment (−39%), and bole respiration rates (−28%).

    Our results suggest carbon starvation takes time, as tree carbon reserves appear resilient to extreme disturbance in the short term. However, after a decade of drought, trees apparently consumed old stored NSC to support metabolism.

     
    more » « less