skip to main content


Title: Cultivating creative thinking in engineering student teams: Can a computer‐mediated virtual laboratory help?
Abstract

In engineering design, engineers must be able to think creatively, effectively toggling between divergent thinking (developing multiple novel ideas) and convergent thinking (pursuing an appropriate idea using engineering analyses). However, creative thinking is not emphasized in many undergraduate engineering programs. In this empirical study, we analyze the divergent thinking of teams working on a virtual laboratory project. Fifteen student teams' solution paths–as represented by Model Maps–were analyzed to characterize and compare the various elements of divergent thinking: fluency, flexibility, and originality. The solution paths of these teams were compared in two physical laboratory projects and to experts completing the same virtual laboratory project. We found that students demonstrated more divergent thinking in the virtual laboratory project than in the physical laboratory projects; yet, divergent thinking and quality of solution did not correlate. There was little difference between measured elements of divergent thinking between student teams and experts.

 
more » « less
NSF-PAR ID:
10453547
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Journal of Computer Assisted Learning
Volume:
37
Issue:
2
ISSN:
0266-4909
Page Range / eLocation ID:
p. 587-601
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Electrical and computer engineering technologies have evolved into dynamic, complex systems that profoundly change the world we live in. Designing these systems requires not only technical knowledge and skills but also new ways of thinking and the development of social, professional and ethical responsibility. A large electrical and computer engineering department at a Midwestern public university is transforming to a more agile, less traditional organization to better respond to student, industry and society needs. This is being done through new structures for faculty collaboration and facilitated through departmental change processes. Ironically, an impetus behind this effort was a failed attempt at department-wide curricular reform. This failure led to the recognition of the need for more systemic change, and a project emerged from over two years of efforts. The project uses a cross-functional, collaborative instructional model for course design and professional formation, called X-teams. X-teams are reshaping the core technical ECE curricula in the sophomore and junior years through pedagogical approaches that (a) promote design thinking, systems thinking, professional skills such as leadership, and inclusion; (b) contextualize course concepts; and (c) stimulate creative, socio-technical-minded development of ECE technologies. An X-team is comprised of ECE faculty members including the primary instructor, an engineering education and/or design faculty member, an industry practitioner, context experts, instructional specialists (as needed to support the process of teaching, including effective inquiry and inclusive teaching) and student teaching assistants. X-teams use an iterative design thinking process and reflection to explore pedagogical strategies. X-teams are also serving as change agents for the rest of the department through communities of practice referred to as Y-circles. Y-circles, comprised of X-team members, faculty, staff, and students, engage in a process of discovery and inquiry to bridge the engineering education research-to-practice gap. Research studies are being conducted to answer questions to understand (1) how educators involved in X-teams use design thinking to create new pedagogical solutions; (2) how the middle years affect student professional ECE identity development as design thinkers; (3) how ECE students overcome barriers, make choices, and persist along their educational and career paths; and (4) the effects of department structures, policies, and procedures on faculty attitudes, motivation and actions. This paper will present the efforts that led up to the project, including failures and opportunities. It will summarize the project, describe related work, and present early progress implementing new approaches. 
    more » « less
  2. A solid understanding of electromagnetic (E&M) theory is key to the education of electrical engineering students. However, these concepts are notoriously challenging for students to learn, due to the difficulty in grasping abstract concepts such as the electric force as an invisible force that is acting at a distance, or how electromagnetic radiation is permeating and propagating in space. Building physical intuition to manipulate these abstractions requires means to visualize them in a three-dimensional space. This project involves the development of 3D visualizations of abstract E&M concepts in Virtual Reality (VR), in an immersive, exploratory, and engaging environment. VR provides the means of exploration, to construct visuals and manipulable objects to represent knowledge. This leads to a constructivist way of learning, in the sense that students are allowed to build their own knowledge from meaningful experiences. In addition, the VR labs replace the cost of hands-on labs, by recreating the experiments and experiences on Virtual Reality platforms. The development of the VR labs for E&M courses involves four distinct phases: (I) Lab Design, (II) Experience Design, (III) Software Development, and (IV) User Testing. During phase I, the learning goals and possible outcomes are clearly defined, to provide context for the VR laboratory experience, and to identify possible technical constraints pertaining to the specific laboratory exercise. During stage II, the environment (the world) the player (user) will experience is designed, along with the foundational elements, such as ways of navigation, key actions, and immersion elements. During stage III, the software is generated as part of the course projects for the Virtual Reality course taught in the Computer Science Department at the same university, or as part of independent research projects involving engineering students. This reflects the strong educational impact of this project, as it allows students to contribute to the educational experiences of their peers. During phase IV, the VR experiences are played by different types of audiences that fit the player type. The team collects feedback and if needed, implements changes. The pilot VR Lab, introduced as an additional instructional tool for the E&M course during the Fall 2019, engaged over 100 students in the program, where in addition to the regular lectures, students attended one hour per week in the E&M VR lab. Student competencies around conceptual understanding of electromagnetism topics are measured via formative and summative assessments. To evaluate the effectiveness of VR learning, each lab is followed by a 10-minute multiple-choice test, designed to measure conceptual understanding of the various topics, rather than the ability to simply manipulate equations. This paper discusses the implementation and the pedagogy of the Virtual Reality laboratory experiences to visualize concepts in E&M, with examples for specific labs, as well as challenges, and student feedback with the new approach. We will also discuss the integration of the 3D visualizations into lab exercises, and the design of the student assessment tools used to assess the knowledge gain when the VR technology is employed. 
    more » « less
  3. null (Ed.)
    This article details the multi-year process of adding a “design thread” to our department’s electrical and computer engineering curricula. We use the conception of a “thread” to mean a sequence of courses that extend unbroken across each year of the undergraduate curriculum. The design thread includes a project-based introduction to the discipline course in the first year, a course in the second year focusing on measurement and fabrication, a course in the third year to frame technical problems in societal challenges, and culminates with our two-semester, client-driven fourth-year capstone design sequence. The impetus to create a design thread arose from preparation for an ABET visit where we identified a need for more “systems thinking” within the curriculum, particularly system decomposition and modularity; difficulty in having students make engineering evaluations of systems based on data; and students’ difficulty transferring skills in testing, measurement, and evaluation from in-class lab scenarios to more independent work on projects. We also noted that when working in teams, students operated more collectively than collaboratively. In other words, rather than using task division and specialization to carry out larger projects, students addressed all problems collectively as a group. This paper discusses the process through which faculty developed a shared conception of design to enable coherent changes to courses in the four year sequence and the political and practical compromises needed to create the design thread. To develop a shared conception of design faculty explored several frameworks that emphasized multiple aspects of design. Course changes based on elements of these frameworks included introducing design representations such as block diagrams to promote systems thinking in the first year and consistently utilizing representations throughout the remainder of the four year sequence. Emphasizing modularity through representations also enabled introducing aspects of collaborative teamwork. While students are introduced broadly to elements of the design framework in their first year, later years emphasize particular aspects. The second year course focuses on skills in fabrication and performance measurement while the third year course emphasizes problem context and users, in an iterative design process. The client-based senior capstone experience integrates all seven aspects of our framework. On the political and organizational side implementing the design thread required major content changes in the department’s introductory course, and freeing up six credit-hour equivalents, one and a half courses, in the curriculum. The paper discusses how the ABET process enabled these discussions to occur, other curricular changes needed to enable the design thread to be implemented, and methods which enabled the two degree programs to align faculty motivation, distribute the workload, and understand the impact the curricular changes had on student learning. 
    more » « less
  4. Research prior to 2005 found that no single framework existed that could capture the engineering design process fully or well and benchmark each element of the process to a commonly accepted set of referenced artifacts. Compounding the construction of a stepwise, artifact driven framework is that engineering design is typically practiced over time as a complex and iterative process. For both novice and advanced students, learning and applying the design process is often cumulative, with many informal and formal programmatic opportunities to practice essential elements. The Engineering Design Process Portfolio Scoring Rubric (EDPPSR) was designed to apply to any portfolio that is intended to document an individual or team driven process leading to an original attempt to design a product, process, or method to provide the best and most optimal solution to a genuine and meaningful problem. In essence, the portfolio should be a detailed account or “biography” of a project and the thought processes that inform that project. Besides narrative and explanatory text, entries may include (but need not be limited to) drawings, schematics, photographs, notebook and journal entries, transcripts or summaries of conversations and interviews, and audio/video recordings. Such entries are likely to be necessary in order to convey accurately and completely the complex thought processes behind the planning, implementation, and self-evaluation of the project. The rubric is comprised of four main components, each in turn comprised of three elements. Each element has its own holistic rubric. The process by which the EDPPSR was created gives evidence of the relevance and representativeness of the rubric and helps to establish validity. The EDPPSR model as originally rendered has a strong theoretical foundation as it has been developed by reference to the literature on the steps of the design process through focus groups and through expert review by teachers, faculty and researchers in performance based, portfolio rubrics and assessments. Using the unified construct validity framework, the EDDPSR’s validity was further established through expert reviewers (experts in engineering design) providing evidence supporting the content relevance and representativeness of the EDPPSR in representing the basic process of engineering design. This manuscript offers empirical evidence that supports the use of the EDPPSR model to evaluate student design-based projects in a reliable and valid manner. Intra-class correlation coefficients (ICC) were calculated to determine the inter-rater reliability (IRR) of the rubric. Given the small sample size we also examined confidence intervals (95%) to provide a range of values in which the estimate of inter-reliability is likely contained. 
    more » « less
  5. Objective

    We explore the relationships between objective communication patterns displayed during virtual team meetings and established, qualitative measures of team member effectiveness.

    Background

    A key component of teamwork is communication. Automated measures of objective communication patterns are becoming more feasible and offer the ability to measure and monitor communication in a scalable, consistent and continuous manner. However, their validity in reflecting meaningful measures of teamwork processes are not well established, especially in real-world settings.

    Method

    We studied real-world virtual student teams working on semester-long projects. We captured virtual team meetings using the Zoom video conferencing platform throughout the semester and periodic surveys comprising peer ratings of team member effectiveness. Leveraging audio transcripts, we examined relationships between objective measures of speaking time, silence gap duration and vocal turn-taking and peer ratings of team member effectiveness.

    Results

    Speaking time, speaking turn count, degree centrality and (marginally) speaking turn duration, but not silence gap duration, were positively related to individual-level team member effectiveness. Time in dyadic interactions and interaction count, but not interaction length, were positively related to dyad-level team member effectiveness.

    Conclusion

    Our study highlights the relevance of objective measures of speaking time and vocal turn-taking to team member effectiveness in virtual project-based teams, supporting the validity of these objective measures and their use in future research.

    Application

    Our approach offers a scalable, easy-to-use method for measuring communication patterns and team member effectiveness in virtual teams and opens the opportunity to study these patterns in a more continuous and dynamic manner.

     
    more » « less