skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Quantifying Long‐Term Seasonal and Regional Impacts of North American Fire Activity on Continental Boundary Layer Aerosols and Cloud Condensation Nuclei
Abstract An intimate knowledge of aerosol transport is essential in reducing the uncertainty of the impacts of aerosols on cloud development. Data sets from the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement platform in the Southern Great Plains region (ARM‐SGP) and the National Aeronautics and Space Administration (NASA) Modern‐Era Retrospective Analysis for Research and Applications, version 2 (MERRA‐2), showed seasonal increases in aerosol loading and total carbon concentration during the spring and summer months (2008–2016) which was attributed to fire activity and smoke transport within North America. The monthly mean MERRA‐2 surface carbonaceous aerosol mass concentration and ARM‐SGP total carbon products were strongly correlated (R = 0.82,p < 0.01) along with a moderate correlation with the ARM‐SGP cloud condensation nuclei (NCCN) product (0.5,p ~ 0.1). The monthly mean ARM‐SGP total carbon andNCCNproducts were strongly correlated (0.7,p ~ 0.01). An additional product denoting fire number and coverage taken from the National Interagency Fire Center (NIFC) showed a moderate correlation with the MERRA‐2 carbonaceous product (0.45,p < 0.01) during the 1981–2016 warm season months (March–September). With respect to meteorological conditions, the correlation between the NIFC fire product and MERRA‐2 850‐hPa isobaric height anomalies was lower (0.26,p ~ 0.13) due to the variability in the frequency, intensity, and number of fires in North America. An observed increase in the isobaric height anomaly during the past decade may lead to frequent synoptic ridging and drier conditions with more fires, thereby potentially impacting cloud/precipitation processes and decreasing air quality.  more » « less
Award ID(s):
1700796 1700728
PAR ID:
10453643
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Earth and Space Science
Volume:
7
Issue:
12
ISSN:
2333-5084
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Controls on pristine aerosol over the Southern Ocean (SO) are critical for constraining the strength of global aerosol indirect forcing. Observations of summertime SO clouds and aerosols in synoptically varied conditions during the 2018 SOCRATES aircraft campaign reveal novel mechanisms influencing pristine aerosol‐cloud interactions. The SO free troposphere (3–6 km) is characterized by widespread, frequent new particle formation events contributing to much larger concentrations (≥1,000 mg−1) of condensation nuclei (diameters > 0.01 μm) than in typical sub‐tropical regions. Synoptic‐scale uplift in warm conveyor belts and sub‐polar vortices lifts marine biogenic sulfur‐containing gases to free‐tropospheric environments favorable for generating Aitken‐mode aerosol particles (0.01–0.1 μm). Free‐tropospheric Aitken particles subside into the boundary layer, where they grow in size to dominate the sulfur‐based cloud condensation nuclei (CCN) driving SO cloud droplet number concentrations (Nd ∼ 60–100 cm−3). Evidence is presented for a hypothesized Aitken‐buffering mechanism which maintains persistently high summertime SONdagainst precipitation removal through CCN replenishment from activation and growth of boundary layer Aitken particles. Nudged hindcasts from the Community Atmosphere Model (CAM6) are found to underpredict Aitken and accumulation mode aerosols andNd, impacting summertime cloud brightness and aerosol‐cloud interactions and indicating incomplete representations of aerosol mechanisms associated with ocean biology. 
    more » « less
  2. Abstract. Over the eastern North Atlantic (ENA) ocean, a total of 20 non-precipitating single-layer marine boundary layer (MBL) stratus and stratocumuluscloud cases are selected to investigate the impacts of the environmental variables on the aerosol–cloud interaction (ACIr) using theground-based measurements from the Department of Energy Atmospheric Radiation Measurement (ARM) facility at the ENA site during 2016–2018. TheACIr represents the relative change in cloud droplet effective radius re with respect to the relative change in cloudcondensation nuclei (CCN) number concentration at 0.2 % supersaturation (NCCN,0.2 %) in the stratified water vaporenvironment. The ACIr values vary from −0.01 to 0.22 with increasing sub-cloud boundary layer precipitable water vapor (PWVBL)conditions, indicating that re is more sensitive to the CCN loading under sufficient water vapor supply, owing to the combined effectof enhanced condensational growth and coalescence processes associated with higher Nc and PWVBL. The principal componentanalysis shows that the most pronounced pattern during the selected cases is the co-variations in the MBL conditions characterized by the verticalcomponent of turbulence kinetic energy (TKEw), the decoupling index (Di), and PWVBL. The environmental effects onACIr emerge after the data are stratified into different TKEw regimes. The ACIr values, under both lowerand higher PWVBL conditions, more than double from the low-TKEw to high-TKEw regime. This can be explained bythe fact that stronger boundary layer turbulence maintains a well-mixed MBL, strengthening the connection between cloud microphysical properties andthe below-cloud CCN and moisture sources. With sufficient water vapor and low CCN loading, the active coalescence process broadens the cloud dropletsize spectra and consequently results in an enlargement of re. The enhanced activation of CCN and the cloud droplet condensationalgrowth induced by the higher below-cloud CCN loading can effectively decrease re, which jointly presents as the increasedACIr. This study examines the importance of environmental effects on the ACIr assessments and provides observational constraintsto future model evaluations of aerosol–cloud interactions. 
    more » « less
  3. null (Ed.)
    Abstract. The aerosol indirect effect on cloud microphysical and radiative propertiesis one of the largest uncertainties in climate simulations. In order toinvestigate the aerosol–cloud interactions, a total of 16 low-level stratuscloud cases under daytime coupled boundary-layer conditions are selectedover the southern Great Plains (SGP) region of the United States. Thephysicochemical properties of aerosols and their impacts on cloudmicrophysical properties are examined using data collected from theDepartment of Energy Atmospheric Radiation Measurement (ARM) facility at the SGP site. The aerosol–cloud interaction index (ACIr) is used to quantify the aerosol impacts with respect to cloud-droplet effective radius. The mean value of ACIr calculated from all selected samples is0.145±0.05 and ranges from 0.09 to 0.24 at a range of cloudliquid water paths (LWPs; LWP=20–300 g m−2). The magnitude of ACIr decreases with an increasing LWP, which suggests a diminished cloud microphysical response to aerosol loading, presumably due to enhanced condensational growth processes and enlarged particle sizes. The impact of aerosols with different light-absorbing abilities on the sensitivity of cloud microphysical responses is also investigated. In the presence of weak light-absorbing aerosols, the low-level clouds feature a higher number concentration of cloud condensation nuclei (NCCN) and smaller effective radii (re), while the opposite is true for strong light-absorbing aerosols. Furthermore, the mean activation ratio of aerosols to CCN (NCCN∕Na) for weakly (strongly) absorbing aerosols is 0.54 (0.45), owing to the aerosol microphysical effects, particularly the different aerosol compositions inferred by their absorptive properties. In terms of the sensitivity of cloud-droplet number concentration (Nd) to NCCN, the fraction of CCN that converted to cloud droplets (Nd∕NCCN) for the weakly (strongly) absorptive regime is 0.69 (0.54). The measured ACIr values in the weakly absorptive regime arerelatively higher, indicating that clouds have greater microphysicalresponses to aerosols, owing to the favorable thermodynamic condition. Thereduced ACIr values in the strongly absorptive regime are due to the cloud-layer heating effect induced by strong light-absorbing aerosols. Consequently, we expect larger shortwave radiative cooling effects from clouds in the weakly absorptive regime than those in the strongly absorptive regime. 
    more » « less
  4. Abstract Comparisons of high‐resolution extended range CCN spectra measured at 100 m altitude with cloud and drizzle microphysics in the Rain in Cumulus over the Ocean (RICO) aircraft field project are presented. CCN concentrations,NCCN, active at supersaturations,S, >0.1% showed positive relationships with cloud droplet concentrations,Nc, measured at intermediate (606–976 m) and very high altitudes (1,763–3,699 m). These correlation coefficients,R, progressively increased withSwhile the two‐tailed probabilities, P2, progressively decreased with S to < 10−6at 1.6%S. More important were the positive relationships betweenNCCNactive atS < 0.1% and drizzle drop concentrations,Nd, at high (977–1,662 m), very high and high‐very high altitudes combined (977–3,699 m). All of these relationships were consistent for eight different cloud liquid water content,Lc, thresholds (forNc) andLcbins (forNd) ranging from 0.0002 to 0.3 g/m3. Negative relationships between CCN modality and low altitude (76–475 m) cloudiness coupled with no relationship ofNCCNactive at any S withNcof these low clouds indicated a cloud effect on ambient aerosol. This is a demonstration of clouds causing bimodal aerosol. 
    more » « less
  5. Abstract Cloud droplet number concentration (Nd) is a key microphysical property that is largely controlled by the balance between sources and sinks of aerosols that serve as cloud condensation nuclei (CCN). Despite being a key sink of CCN, the impact of coalescence scavenging on Southern Ocean (SO) cloud is poorly known. We apply a simple source‐and‐sink budget model based on parameterizations to austral summer aircraft observations to test model behavior and examine the relative influence of processes that determineNdin SO stratocumulus clouds. The model predictsNdwith little bias and a correlation coefficient of ∼0.7 compared with observations. Coalescence scavenging is found to be an important sink of CCN in both liquid and mixed‐phase precipitating stratocumulus and reduces the predictedNdby as much as 90% depending on the precipitation rate. The free tropospheric aerosol source controlsNdmore strongly than the surface aerosol source during austral summer. 
    more » « less