skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: How to study a predator that only eats a few meals a year: high-frequency accelerometry to quantify feeding behaviours of rattlesnakes (Crotalus spp.)
Abstract Background Many snakes are low-energy predators that use crypsis to ambush their prey. Most of these species feed very infrequently, are sensitive to the presence of larger vertebrates, such as humans, and spend large portions of their lifetime hidden. This makes direct observation of feeding behaviour challenging, and previous methodologies developed for documenting predation behaviours of free-ranging snakes have critical limitations. Animal-borne accelerometers have been increasingly used by ecologists to quantify activity and moment-to-moment behaviour of free ranging animals, but their application in snakes has been limited to documenting basic behavioural states (e.g., active vs. non-active). High-frequency accelerometry can provide new insight into the behaviour of this important group of predators, and here we propose a new method to quantify key aspects of the feeding behaviour of three species of viperid snakes ( Crotalus spp.) and assess the transferability of classification models across those species. Results We used open-source software to create species-specific models that classified locomotion, stillness, predatory striking, and prey swallowing with high precision, accuracy, and recall. In addition, we identified a low cost, reliable, non-invasive attachment method for accelerometry devices to be placed anteriorly on snakes, as is likely necessary for accurately classifying distinct behaviours in these species. However, species-specific models had low transferability in our cross-species comparison. Conclusions Overall, our study demonstrates the strong potential for using accelerometry to document critical feeding behaviours in snakes that are difficult to observe directly. Furthermore, we provide an ‘end-to-end’ template for identifying important behaviours involved in the foraging ecology of viperids using high-frequency accelerometry. We highlight a method of attachment of accelerometers, a technique to simulate feeding events in captivity, and a model selection procedure using biologically relevant window sizes in an open-access software for analyzing acceleration data (AcceleRater). Although we were unable to obtain a generalized model across species, if more data are incorporated from snakes across different body sizes and different contexts (i.e., moving through natural habitat), general models could potentially be developed that have higher transferability.  more » « less
Award ID(s):
1856404 1856408
PAR ID:
10454105
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Animal Biotelemetry
Volume:
11
Issue:
1
ISSN:
2050-3385
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The costs of foraging can be high while also carrying significant risks, especially for consumers feeding at the top of the food chain.To mitigate these risks, many predators supplement active hunting with scavenging and kleptoparasitic behaviours, in some cases specializing in these alternative modes of predation.The factors that drive differential utilization of these tactics from species to species are not well understood.Here, we use an energetics approach to investigate the survival advantages of hunting, scavenging and kleptoparasitism as a function of predator, prey and potential competitor body sizes for terrestrial mammalian carnivores.The results of our framework reveal that predator tactics become more diverse closer to starvation, while the deployment of scavenging and kleptoparasitism is strongly constrained by the ratio of predator to prey body size.Our model accurately predicts a behavioural transition away from hunting towards alternative modes of predation with increasing prey size for predators spanning an order of magnitude in body size, closely matching observational data across a range of species.We then show that this behavioural boundary follows an allometric power‐law scaling relationship where the predator size scales with an exponent nearing 3/4 with prey size, meaning that this behavioural switch occurs at relatively larger threshold prey body size for larger carnivores.We suggest that our approach may provide a holistic framework for guiding future observational efforts exploring the diverse array of predator foraging behaviours. 
    more » « less
  2. Eye gaze is an important source of information for animals, implicated in communication, cooperation, hunting and antipredator behaviour. Gaze perception and its cognitive underpinnings are much studied in primates, but the specific features that are used to estimate gaze can be difficult to isolate behaviourally. We photographed 13 laboratory-housed tufted capuchin monkeys ( Sapajus [Cebus] apella ) to quantify chromatic and achromatic contrasts between their iris, pupil, sclera and skin. We used colour vision models to quantify the degree to which capuchin eye gaze is discriminable to capuchins, their predators and their prey. We found that capuchins, regardless of their colour vision phenotype, as well as their predators, were capable of effectively discriminating capuchin gaze across ecologically relevant distances. Their prey, in contrast, were not capable of discriminating capuchin gaze, even under relatively ideal conditions. These results suggest that specific features of primate eyes can influence gaze perception, both within and across species. 
    more » « less
  3. Abstract Rattlesnakes are widespread mesopredators that are themselves killed and eaten by a host of other predators, including birds of prey and carnivorous mammals. Although anecdotal accounts of rattlesnake depredation are common, there are few quantitative data on encounter rates between rattlesnakes and their predators. Here we review a large database of encounters between rattlesnakes and their predators recorded from field videography of snakes in the sit-and-wait phase of their ambush hunting strategy. We found that, across 8300 hours of observation, adult rattlesnakes of six species and multiple populations exhibit low encounter rates with predators; furthermore, when predators were encountered, we never observed them to attack or kill coiled snakes. Thus, we propose that rattlesnakes are preyed upon while performing other, riskier behaviors associated with moving through the landscape. We also discuss why rattlesnakes are at low risk of predation while hunting on the surface. 
    more » « less
  4. Abstract BackgroundKangaroo rats are small mammals that are among the most abundant vertebrates in many terrestrial ecosystems in Western North America and are considered both keystone species and ecosystem engineers, providing numerous linkages between other species as both consumers and resources. However, there are challenges to studying the behavior and activity of these species due to the difficulty of observing large numbers of individuals that are small, secretive, and nocturnal. Our goal was to develop an integrated approach of miniaturized animal-borne accelerometry and radiotelemetry to classify the cryptic behavior and activity cycles of kangaroo rats and test hypotheses of how their behavior is influenced by light cycles, moonlight, and weather. MethodsWe provide a proof-of-concept approach to effectively quantify behavioral patterns of small bodied (< 50 g), nocturnal, and terrestrial free-ranging mammals using large acceleration datasets by combining low-mass, miniaturized animal-borne accelerometers with radiotelemetry and advanced machine learning techniques. We developed a method of attachment and retrieval for deploying accelerometers, a non-disruptive method of gathering observational validation datasets for acceleration data on free-ranging nocturnal small mammals, and used these techniques on Merriam’s kangaroo rats to analyze how behavioral patterns relate to abiotic factors. ResultsWe found that Merriam’s kangaroo rats are only active during the nighttime phases of the diel cycle and are particularly active during later light phases of the night (i.e., late night, morning twilight, and dawn). We found no reduction in activity or foraging associated with moonlight, indicating that kangaroo rats are actually more lunarphilic than lunarphobic. We also found that kangaroo rats increased foraging effort on more humid nights, most likely as a mechanism to avoid cutaneous water loss. ConclusionsSmall mammals are often integral to ecosystem functionality, as many of these species are highly abundant ecosystem engineers driving linkages in energy flow and nutrient transfer across trophic levels. Our work represents the first continuous detailed quantitative description of fine-scale behavioral activity budgets in kangaroo rats, and lays out a general framework for how to use miniaturized biologging devices on small and nocturnal mammals to examine behavioral responses to environmental factors. 
    more » « less
  5. Abstract Predators must contend with numerous challenges to successfully find and subjugate prey. Complex traits related to hunting are partially controlled by a large number of co‐evolved genes, which may be disrupted in hybrids. Accordingly, research on the feeding ecology of animals in hybrid zones has shown that hybrids sometimes exhibit transgressive or novel behaviors, yet for many taxa, empirical studies of predation and diet across hybrid zones are lacking. We undertook the first such field study for a hybrid zone between two snake species, the Mojave rattlesnake (Crotalus scutulatus) and the prairie rattlesnake (Crotalus viridis). Specifically, we leveraged established field methods to quantify the hunting behaviors of animals, their prey communities, and the diet of individuals across the hybrid zone in southwestern New Mexico, USA. We found that, even though hybrids had significantly lower body condition indices than snakes from either parental group, hybrids were generally similar to non‐hybrids in hunting behavior, prey encounter rates, and predatory attack and success. We also found that, compared toC. scutulatus,C. viridiswas significantly more active while hunting at night and abandoned ambush sites earlier in the morning, and hybrids tended to be moreviridis‐like in this respect. Prey availability was similar across the study sites, including within the hybrid zone, with kangaroo rats (Dipodomysspp.) as the most common small mammal, both in habitat surveys and the frequency of encounters with hunting rattlesnakes. Analysis of prey remains in stomachs and feces also showed broad similarity in diets, with all snakes preying primarily on small mammals and secondarily on lizards. Taken together, our results suggest that the significantly lower body condition of hybrids does not appear to be driven by differences in their hunting behavior or diet and may instead relate to metabolic efficiency or other physiological traits we have not yet identified. 
    more » « less