skip to main content

Title: Hybrid Graphene‐Gold Nanoparticle‐Based Nucleic Acid Conjugates for Cancer‐Specific Multimodal Imaging and Combined Therapeutics

Nanoparticle‐based nucleic acid conjugates (NP‐NACs) hold great promise for theragnostic applications. However, several limitations have hindered the realization of their full potential in the clinical treatment of cancer and other diseases. In diagnoses, NP‐NACs suffer from low signal‐to‐noise ratios, while the efficiency of NP‐NACs‐mediated cancer therapies has been limited by the adaptation of alternative prosurvival pathways in cancer cells. The recent emergence of personalized and precision medicine has outlined the importance of having both accurate diagnosis and efficient therapeutics in a single platform. As such, the controlled assembly of hybrid graphene oxide/gold nanoparticle (Au@GO NP)‐based cancer‐specific NACs (Au@GO NP‐NACs) for multimodal imaging and combined therapeutics is reported. The developed Au@GO NP‐NACs show excellent surface‐enhanced Raman scattering (SERS)‐mediated live‐cell cancer detection and multimodal synergistic cancer therapy through the use of photothermal, genetic, and chemotherapeutic strategies. Synergistic and selective killing of cancer cells are then demonstrated using in vitro microfluidic models. Moreover, with the distinctive advantages of the Au@GO NP‐NACs for cancer theragnostics, precision cancer treatment through the detection of cancer cells in vivo using SERS followed by efficient ablation of tumors is shown. Therefore, the Au@GO NP‐NACs can pave a new road for advanced disease theragnostics.

more » « less
Award ID(s):
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Functional Materials
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Even in the 21st century, prostate cancer remains the second leading cause of cancer‐related death for men. Since a normal prostate gland has a high ZnIIcontent and there are huge differences in ZnIIcontent between healthy and malignant prostate cancer cells, mobile zinc can be used as a biomarker for prostate cancer prediction. A highly efficient surface enhanced Raman spectroscopy (SERS) probe using ap‐(imidazole)azo)benzenethiol attached gold nanoparticle as a Raman reporter, which has the capability to identify prostate cancer cells based on ZnIIsensing, has been designed. A facile synthesis, characterization and evaluation of a ZnIIsensing Raman probe are described. Reported data indicate that after binding with ZnII, Raman reporter attached to a gold nanoparticle forms an assembly structure, which allows selective detection of ZnIIeven at 100 ppt concentration. Theoretical full‐wave finite‐difference time‐domain (FDTD) simulations have been used to understand the enhancement of the SERS signal. The SERS probe is highly promising for in vivo sensing of cancer, where near‐IR light can be easily used to avoid tissue autofluorescence and to enhance tissue penetration depth. Reported data show that the SERS probe can distinguish metastatic cancer cells from normal prostate cells very easily with a sensitivity as low as 5 cancer cells mL−1. The probe can be used as a chemical toolkit for determining mobile ZnIIconcentrations in biological samples.

    more » « less
  2. Abstract

    Lipid metabolism and glycolysis play crucial roles in the progression and metastasis of cancer, and the use of 3‐bromopyruvate (3‐BP) as an antiglycolytic agent has shown promise in killing pancreatic cancer cells. However, developing an effective strategy to avoid chemoresistance requires the ability to probe the interaction of cancer drugs with complex tumor‐associated microenvironments (TAMs). Unfortunately, no robust and multiplexed molecular imaging technology is currently available to analyze TAMs. In this study, the simultaneous profiling of three protein biomarkers using SERS nanotags and antibody‐functionalized nanoparticles in a syngeneic mouse model of pancreatic cancer (PC) is demonstrated. This allows for comprehensive information about biomarkers and TAM alterations before and after treatment. These multimodal imaging techniques include surface‐enhanced Raman spectroscopy (SERS), immunohistochemistry (IHC), polarized light microscopy, second harmonic generation (SHG) microscopy, fluorescence lifetime imaging microscopy (FLIM), and untargeted liquid chromatography and mass spectrometry (LC‐MS) analysis. The study reveals the efficacy of 3‐BP in treating pancreatic cancer and identifies drug treatment‐induced lipid species remodeling and associated pathways through bioinformatics analysis.

    more » « less
  3. Abstract

    Clinical treatment of cancer commonly incorporates X‐ray radiation therapy (XRT), and developing spatially precise radiation‐activatable drug delivery strategies may improve XRT efficacy while limiting off‐target toxicities associated with systemically administered drugs. Nevertheless, achieving this has been challenging thus far because strategies typically rely on radical species with short lifespans, and the inherent nature of hypoxic and acidic tumor microenvironments may encourage spatially heterogeneous effects. It is hypothesized that the challenge could be bypassed by using scintillating nanoparticles that emit light upon X‐ray absorption, locally forming therapeutic drug depots in tumor tissues. Thus a nanoparticle platform (Scintillating nanoparticleDrugDepot; SciDD) that enables the local release of cytotoxic payloads only after activation by XRT is developed, thereby limiting off‐target toxicity. As a proof‐of‐principle, SciDD is used to deliver a microtubule‐destabilizing payload MMAE (monomethyl auristatin E). With as little as a 2 Gy local irradiation to tumors, MMAE payloads are released effectively to kill tumor cells. XRT‐mediated drug release is demonstrated in multiple mouse cancer models and showed efficacy over XRT alone (p < 0.0001). This work shows that SciDD can act as a local drug depot with spatiotemporally controlled release of cancer therapeutics.

    more » « less
  4. Abstract

    Cancer is a dynamic disease characterized by its heterogeneous nature. This heterogeneity results in critical problems that interfere with the eradication of cancer tumors such as multidrug resistance, drug efflux capacity, narrow therapeutic window, and undesired side effects. Nanomedicine has introduced new platforms for drug delivery to enhance therapeutic efficiency of anticancer drugs. In addition to drug delivery, nanocarriers such as liposomes, carbon nanotubes, quantum dots, polymeric nanoparticles, dendrimers, and metallic nanoparticles can be designed for detection, diagnosis, and treatment. Recent studies support the idea that a combination of two or more nanoparticle‐mediated therapies can result in a synergistic therapeutic outcome to improve current cancer treatments. In this progress report, recent advances in nanoparticles‐based combination therapies are discussed. A brief overview of the complexity of cancer tumor's microenvironment is presented, followed by discussion of combinatorial therapies categorized based on chemotherapeutic agents, nucleic acid or therapeutic proteins, energy‐based therapies and imaging techniques for theranostic application. Different nanotechnological platforms are developed for combination therapy as tools with a great potential to tackle the most critical issues of current cancer treatments. A deeper understanding of these nanotechnologies and their possible long‐term effects in biological systems is needed for further clinical translation.

    more » « less
  5. Abstract

    Surgical resection is the primary and most effective treatment for most patients with solid tumors. However, patients suffer from postoperative recurrence and metastasis. In the past years, emerging nanotechnology has led the way to minimally invasive, precision and intelligent oncological surgery after the rapid development of minimally invasive surgical technology. Advanced nanotechnology in the construction of nanomaterials (NMs) for precision imaging‐guided surgery (IGS) as well as surgery‐assisted synergistic therapy is summarized, thereby unlocking the advantages of nanotechnology in multimodal IGS‐assisted precision synergistic cancer therapy. First, mechanisms and principles of NMs to surgical targets are briefly introduced. Multimodal imaging based on molecular imaging technologies provides a practical method to achieve intraoperative visualization with high resolution and deep tissue penetration. Moreover, multifunctional NMs synergize surgery with adjuvant therapy (e.g., chemotherapy, immunotherapy, phototherapy) to eliminate residual lesions. Finally, key issues in the development of ideal theranostic NMs associated with surgical applications and challenges of clinical transformation are discussed to push forward further development of NMs for multimodal IGS‐assisted precision synergistic cancer therapy.

    more » « less