skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Stable isotope fingerprinting traces essential amino acid assimilation and multichannel feeding in a vertebrate consumer
Abstract Animals often consume resources from multiple energy channels, thereby connecting food webs and driving trophic structure. Such ‘multichannel feeding’ can dictate ecosystem function and stability, but tools to quantify this process are lacking. Stable isotope ‘fingerprints’ are unique patterns in essential amino acid (EAA) δ 13 C values that vary consistently between energy channels like primary production and detritus, and they have emerged as a tool to trace energy flow in wild systems. Because animals cannot synthesize EAAs de novo and must acquire them from dietary proteins, ecologists often assume δ 13 C fingerprints travel through food webs unaltered. Numerous studies have used this approach to quantify energy flow and multichannel feeding in animals, but δ 13 C fingerprinting has never been experimentally tested in a vertebrate consumer. We tested the efficacy of δ 13 C fingerprinting using captive deer mice Peromyscus maniculatus raised on diets containing bacterial, fungal and plant protein, as well as a combination of all three sources. We measured the transfer of δ 13 C fingerprints from diet to consumer liver, muscle and bone collagen, and we used linear discriminant analysis (LDA) and isotopic mixing models to estimate dietary proportions compared to known contributions. Lastly, we tested the use of published δ 13 C source fingerprints previously used to estimate energy flow and multichannel feeding by consumers. We found that EAA δ 13 C values exhibit significant isotopic (i.e. trophic) fractionation between consumer tissues and diets. Nevertheless, LDA revealed that δ 13 C fingerprints are consistently routed and assimilated into consumer tissues, regardless of isotopic incorporation rate. Isotopic mixing models accurately estimated the proportional diets of consumers, but all models overestimated plant‐based protein contributions, likely due to the digestive efficiencies of protein sources. Lastly, we found that δ 13 C source fingerprints from published literature can lead to erroneous diet reconstruction. We show that δ 13 C fingerprints accurately measure energy flow to vertebrate consumers across tissues with different isotopic incorporation rates, thereby enabling the estimation of multichannel feeding at various temporal scales. Our findings illustrate the power of δ 13 C fingerprinting for quantifying food web dynamics, but also reveal that careful selection of dietary source data is critical to the accuracy of this emerging technique.  more » « less
Award ID(s):
2010712
PAR ID:
10454850
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Methods in Ecology and Evolution
Volume:
13
Issue:
8
ISSN:
2041-210X
Page Range / eLocation ID:
1819 to 1830
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Winemiller, KO. (Ed.)
    The widespread importance of variable types of primary production, or energy channels, to consumer communities has become increasingly apparent. However, the mechanisms underlying this “multichannel” feeding remain poorly understood, especially for aquatic ecosystems that pose unique logistical constraints given the diversity of potential energy channels. Here, we use bulk tissue isotopic analysis along with carbon isotope (δ13C) analysis of individual amino acids to characterize the relative contribution of pelagic and benthic energy sources to a kelp forest consumer community in northern Chile. We measured bulk tissue δ13C and δ15N for >120 samples; of these we analyzed δ13C values of six essential amino acids (EAA) from nine primary producer groups (n = 41) and 11 representative nearshore consumer taxa (n = 56). Using EAA δ13C data, we employed linear discriminant analysis (LDA) to assess how distinct EAA δ13C values were between local pelagic (phytoplankton/particulate organic matter), and benthic (kelps, red algae, and green algae) endmembers. With this model, we were able to correctly classify nearly 90% of producer samples to their original groupings, a significant improvement on traditional bulk isotopic analysis. With this EAA isotopic library, we then generated probability distributions for the most important sources of production for each individual consumer and species using a bootstrap‐resampling LDA approach. We found evidence for multichannel feeding within the community at the species level. Invertebrates tended to focus on either pelagic or benthic energy, deriving 13–67% of their EAA from pelagic sources. In contrast, mobile (fish) taxa at higher trophic levels used more equal proportions of each channel, ranging from 19% to 47% pelagically derived energy. Within a taxon, multichannel feeding was a result of specialization among individuals in energy channel usage, with 37 of 56 individual consumers estimated to derive >80% of their EAA from a single channel. Our study reveals how a cutting‐edge isotopic technique can characterize the dynamics of energy flow in coastal food webs, a topic that has historically been difficult to address. More broadly, our work provides a mechanism as to how multichannel feeding may occur in nearshore communities, and we suggest this pattern be investigated in additional ecosystems. 
    more » « less
  2. Abstract Food web ecology has revolutionized our understanding of ecological processes, but the drivers of food web properties like trophic position (TP) and food chain length are notoriously enigmatic. In terrestrial ecosystems, above‐ and belowground systems were historically compartmentalized into “green” and “brown” food webs, but the coupling of these systems by animal consumers is increasingly recognized, with potential consequences for trophic structure. We used stable isotope analysis (δ 13 C, δ 15 N) of individual amino acids to trace the flow of essential biomolecules and jointly measure multichannel feeding, food web coupling, and TP in a guild of small mammals. We then tested the hypothesis that brown energy fluxes to aboveground consumers increase terrestrial food chain length via cryptic trophic transfers during microbial decomposition. We found that the average small mammal consumer acquired nearly 70% of their essential amino acids (69.0% ± 7.6%) from brown food webs, leading to significant increases in TP across species and functional groups. Fungi were the primary conduit of brown energy to aboveground consumers, providing nearly half the amino acid budget for small mammals on average (44.3% ± 12.0%). These findings illustrate the tightly coupled nature of green and brown food webs and show that microbially mediated energy flow ultimately regulates food web structure in aboveground consumers. Consequently, we propose that the integration of green and brown energy channels is a cryptic driver of food chain length in terrestrial ecosystems. 
    more » « less
  3. Previous research in southeast Alaska on the effects of sea otters Enhydra lutris in seagrass Zostera marina communities identified many but not all of the trophic relationships that were predicted by a sea otter-mediated trophic cascade. To further resolve these trophic connections, we compared biomass, carbon (δ 13 C) and nitrogen (δ 15 N) stable isotope (SI), and fatty acid (FA) data from 16 taxa at 3 sites with high and 3 sites with low sea otter density (8.2 and 0.1 sea otters km -2 , respectively). We found lower crab and clam biomass in the high sea otter region but did not detect a difference in biomass of other seagrass community taxa or the overall community isotopic niche space between sea otter regions. Only staghorn sculpin differed in δ 13 C between regions, and Fucus , sugar kelp, butter clams, dock shrimp, and shiner perch differed in δ 15 N. FA analysis indicated multivariate dissimilarity in 11 of the 15 conspecifics between sea otter regions. FA analysis found essential FAs, which consumers must obtain from their diet, including 20:5ω3 (EPA) and 22:6ω3 (DHA), were common in discriminating conspecifics between sea otter regions, suggesting differences in consumer diets. Further FA analysis indicated that many consumers rely on diverse diets, regardless of sea otter region, potentially buffering these consumers from sea otter-mediated changes to diet availability. While sea otters are major consumers in this system, further studies are needed to understand the mechanisms responsible for the differences in biomarkers between regions with and without sea otters. 
    more » « less
  4. We evaluated annual and regional variation in the dietary niche of Pygoscelis penguins including the sea ice-obligate Adélie penguin ( Pygoscelis adeliae ), and sea ice-intolerant chinstrap ( Pygoscelis antarcticus ) and gentoo ( Pygoscelis papua ) penguins, three species that nest throughout the western Antarctic Peninsula (AP) to test the sea ice trophic interaction hypothesis , which posits that penguin breeding populations with divergent trends, i.e., declining or increasing, are reliant on differing food webs. Our study relies on values of naturally occurring carbon ( 13 C/ 12 C, δ 13 C) and nitrogen ( 15 N/ 14 N, δ 15 N) stable isotopes as integrated proxies of penguin food webs measured over three years at three different breeding colonies. At Anvers Island in the north, where reductions in sea ice and changes in breeding population trends among sympatric sea ice-obligate (Adélie) and sea ice-intolerant (chinstrap and gentoo) penguins have been most notable, our analyses show that all three species of Pygoscelis penguins became more similar isotopically over the reproductive period. By late chick-rearing at Anvers Island, crèched chicks at 5-weeks-old for all species occupied similar trophic positions. Isotopic mixing models indicated that the proportions of prey provisioned by adult penguins to 5-week-old chicks at Anvers Island were generally similar across species within years, consisting primarily of Antarctic krill ( Euphausia superba ). Crèched Adélie chicks had higher δ 13 C and δ 15 N values at Avian and Charcot Islands, southern breeding colonies where sea ice is more prominent and populations of Adélie penguins have increased or remain stable. Trophic position increased with latitude, while the proportions of prey provisioned by Adélie penguin adults to chicks at southern breeding colonies included species typical of high Antarctic marine food webs, especially crystal krill ( Euphausia crystallorophias ). A Bayesian metric for dietary niche width, standard ellipse area (SEA-B), indicated that Pygoscelis penguins with greater population changes in the north had more variability in dietary niche width than stable populations further south. Our results lend insight on marine food web drivers of Pygoscelis penguin reproduction at the regional scale and question the long-standing paradigm that Antarctic krill are the only food web component critical to penguin reproductive survival in this region of the Southern Ocean. 
    more » « less
  5. Chase, Jonathan (Ed.)
    Diet composition is among the most important yet least understood dimensions of animal ecology. Inspired by the study of species abundance distributions (SADs), we tested for generalities in the structure of vertebrate diets by characterising them as dietary abundance distributions (DADs). We compiled data on 1167 population- level diets, representing >500 species from six vertebrate classes, spanning all con- tinents and oceans. DADs near-universally (92.5%) followed a hollow-curve shape, with scant support for other plausible rank-abundance-distribution shapes. This strong generality is inherently related to, yet incompletely explained by, the SADs of available food taxa. By quantifying dietary generalisation as the half-saturation point of the cumulative distribution of dietary abundance (sp50, minimum number of foods required to account for 50% of diet), we found that vertebrate populations are surprisingly specialised: in most populations, fewer than three foods accounted for at least half the diet. Variation in sp50 was strongly associated with consumer type, with carnivores being more specialised than herbivores or omnivores. Other methodological (sampling method and effort, taxonomic resolution), biological (body mass, frugivory) and biogeographic (latitude) factors influenced sp50 to varying degrees. Future challenges include identifying the mechanisms underpin- ning the hollow-curve DAD, its generality beyond vertebrates, and the biological determinants of dietary generalisation. 
    more » « less