skip to main content

Title: A High Sensitivity Custom-Built Vibrating Sample Magnetometer
This work details the construction and optimization of a fully automated, custom-built, remote controlled vibrating sample magnetometer for use in spintronics related research and teaching. Following calibration by a standard 6 mm diameter Ni disc sample with known magnetic moment, hysteresis measurements of Nd-Fe-B thin films acquired by this built vibrating sample magnetometer were compared to the data taken using a commercial superconducting quantum interference device and showed very similar results. In plane and out of plane magnetic hysteresis data acquired for 25 nm Fe thin films are also presented. The developed vibrating sample magnetometer is able to achieve a sensitivity approaching 1 × 10−5 emu. Further alterations to the design that may improve beyond this limit are also discussed.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Page Range / eLocation ID:
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Magnetic materials with kagome crystal structure exhibit rich physics, such as frustrated magnetism, skyrmion formation, topological flat bands, and Dirac/Weyl points. Until recently, most studies on kagome magnets have been performed on bulk crystals or polycrystalline films. Here, we report the atomic layer molecular beam epitaxy synthesis of high-quality thin films of topological kagome magnet Fe 3 Sn 2 . The structural and magnetic characterization of Fe 3 Sn 2 on epitaxial Pt(111) identifies highly ordered films with c-plane orientation and an in-plane magnetic easy axis. Studies on the local magnetic structure by anomalous Nernst effect imaging reveal in-plane oriented micrometer size domains. Superlattice structures consisting of Fe 3 Sn 2 and Fe 3 Sn are also synthesized by atomic layer molecular beam epitaxy, demonstrating the ability to modulate the sample structure at the atomic level. The realization of high-quality films by atomic layer molecular beam epitaxy opens the door to explore the rich physics of this system and investigate novel spintronic phenomena by interfacing Fe 3 Sn 2 with other materials. 
    more » « less
  2. null (Ed.)
    We present structural, magnetic, and optical properties of hexagonal HoFeO3/Al2O3 thin films deposited by Magnetron Sputtering. The x-ray diffraction patterns of HoFeO3 thin films show the c-planes of a hexagonal structure. The magnetization data display an antiferromagnetic transition temperature, TN∼120 ± 5 K and the magnetization-field hysteresis loops were measured below 100 K, confirming a weak ferromagnetism arising from a spin canting of the Fe3+ moments. The magnetization data also show an anomaly around ∼40 K due to a spin-reorientation transition caused by the Ho3+- Fe3+ interactions. We observed comparable magnetization along the ab plane and c axis although the spin canting of Fe3+ sites has a preferential component along the c axis, suggesting that the Ho3+- Fe3+ interactions dominate in the low temperature magnetic structures of hexagonal-HoFeO3. The observed electronic excitations at ∼2.29, 2.87, 3.82, 4.79, and 6.53 eV have been assigned to the Fe3+ d to d on-site as well as O 2p to Fe 3d, Ho 6s, and 5d charge-transfer excitations, respectively. The room temperature energy band gap of the hexagonal-HoFeO3 thin film was measured to be ∼1.99 ± 0.04 eV. 
    more » « less
  3. Bi 3 MoM T O 9 (BMoM T O; M T , transition metals of Mn, Fe, Co and Ni) thin films with a layered supercell structure have been deposited on LaAlO 3 (001) substrates by pulsed laser deposition. Microstructural analysis suggests that pillar-like domains with higher transition metal concentration ( e.g. , Mn, Fe, Co and Ni) are embedded in the Mo-rich matrix with layered supercell structures. The layered supercell structure of the BMoM T O thin films accounts for the anisotropic multifunctionalities such as the magnetic easy axis along the in-plane direction, and the anisotropic optical properties. Ferroelectricity and ferromagnetism have been demonstrated in the thin films at room temperature, which confirms the multiferroic nature of the system. By varying the transition metal M T in the film, the band gaps of the BMoM T O films can be effectively tuned from 2.44 eV to 2.82 eV, while the out-of-plane dielectric constant of the thin films also varies. The newly discovered layered nanocomposite systems present their potential in ferroelectrics, multiferroics and non-linear optics. 
    more » « less
  4. Abstract The control of the in-plane domain evolution in ferroelectric thin films is not only critical to understanding ferroelectric phenomena but also to enabling functional device fabrication. However, in-plane polarized ferroelectric thin films typically exhibit complicated multi-domain states, not desirable for optoelectronic device performance. Here we report a strategy combining interfacial symmetry engineering and anisotropic strain to design single-domain, in-plane polarized ferroelectric BaTiO 3 thin films. Theoretical calculations predict the key role of the BaTiO 3 /PrScO 3 $${({{{{{\boldsymbol{110}}}}}})}_{{{{{{\bf{O}}}}}}}$$ ( 110 ) O substrate interfacial environment, where anisotropic strain, monoclinic distortions, and interfacial electrostatic potential stabilize a single-variant spontaneous polarization. A combination of scanning transmission electron microscopy, piezoresponse force microscopy, ferroelectric hysteresis loop measurements, and second harmonic generation measurements directly reveals the stabilization of the in-plane quasi-single-domain polarization state. This work offers design principles for engineering in-plane domains of ferroelectric oxide thin films, which is a prerequisite for high performance optoelectronic devices. 
    more » « less
  5. Abstract

    This work characterizes the structural, magnetic, and ferroelectric properties of epitaxial LuFeO3orthoferrite thin films with different Lu/Fe ratios. LuFeO3thin films are grown by pulsed laser deposition on SrTiO3substrates with Lu/Fe ratio ranging from 0.6 to 1.5. LuFeO3is antiferromagnetic with a weak canted moment perpendicular to the film plane. Piezoresponse force microscopy imaging and switching spectroscopy reveal room temperature ferroelectricity in Lu‐rich and Fe‐rich films, whereas the stoichiometric film shows little polarization. Ferroelectricity in Lu‐rich films is present for a range of deposition conditions and crystallographic orientations. Positive‐up‐negative‐down ferroelectric measurements on a Lu‐rich film yield ≈13 µC cm−2of switchable polarization, although the film also shows electrical leakage. The ferroelectric response is attributed to antisite defects analogous to that of Y‐rich YFeO3, yielding multiferroicity via defect engineering in a rare earth orthoferrite.

    more » « less