skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Uplink Power Analysis of RIS-assisted Communication Over Shared Radar Spectrum
The wide deployment of wireless sensor networks has two limiting factors: the power-limited sensors and the congested radio frequency spectrum. A promising way to reduce the transmission power of sensors, and consequently prolonging their lifetime, is deploying reconfigurable intelligent surfaces (RISs) that passively beamform the sensors transmission to remote data centers. Furthermore, spectrum limitation can be overcome by spectrum sharing between sensors and radars. This paper utilizes tools from stochastic geometry to characterize the power reduction in sensors due to utilizing RISs in a shared spectrum with radars. We show that allowing RIS-assisted communication reduces the power consumption of the sensor nodes, and that the power reduction increases with the RISs density. Furthermore, we show that radars with narrow beamwidths allow more power saving for the sensor nodes in its vicinity.  more » « less
Award ID(s):
1816112
PAR ID:
10455003
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
International Conference on Communications, Signal Processing, and their Applications (ICCSPA)
Page Range / eLocation ID:
1 to 5
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Gao, H.; Fan, P.; Wun, J.; Xiaoping, X.; Yu, J.; Wang, Y. (Ed.)
    RFID technology is playing an increasingly more important role in the Internet of Things, especially in the dense deployment model. In such networks, in addition to communication, nodes may also need to harvest energy from the environment to operate. In particular, we assume that our network model relies on RFID sensor network consisting of Wireless Identification and Sensing Platform (WISP) devices and RFID exciters. In WISP, the sensors harvest ambient energy from the RFID exciters and use this energy for communication back to the exciter. However, as the number of exciters is typically small, sensors further away from an exciter will need longer charging time to be able to transmit the same amount of information than a closer by sensor. Thus, further away sensors limit the overall throughput of the network. In this paper, we propose to use a multi-modulation scheme, which trades off power for transmission duration. More specifically, in this scheme, sensors closer to the exciter use a higher-order modulation, which requires more power than a lower-order modulation assigned to further away sensors, for the same bit error rate of all the sensors’ transmissions. This reduces the transmission time of the closer sensors, while also reducing the charging time of the further away sensors, overall increasing the total net-work throughput. The evaluation results show that the RFID sensor network with our multi-modulation scheme has significantly higher throughput as compared with the traditional single-modulation scheme. 
    more » « less
  2. Communication presents a critical challenge for emerging intermittently powered batteryless sensors. Batteryless devices that operate entirely on harvested energy often experience frequent, unpredictable power outages and have trouble keeping time accurately. Consequently, effective communication using today’s low-power wireless network standards and protocols becomes difficult, particularly because existing standards are usually designed to support reliably powered devices with predictable node availability and accurate timekeeping capabilities for connection and congestion management. In this article, we present Greentooth, a robust and energy-efficient wireless communication protocol for intermittently powered sensor networks. It enables reliable communication between a receiver and multiple batteryless sensors using Time Division Multiple Access–style scheduling and low-power wake-up radios for synchronization. Greentooth employs lightweight and energy-efficient connections that are resilient to transient power outages, while significantly improving network reliability, throughput, and energy efficiency of both the battery-free sensor nodes and the receiver—which could be untethered and energy constrained. We evaluate Greentooth using a custom-built batteryless sensor prototype on synthetic and real-world energy traces recorded from different locations in a garden across different times of the day. Results show that Greentooth achieves 73% and 283% more throughput compared to Asynchronous Wake-up on Demand MAC and Receiver-Initiated Consecutive Packet Transmission Wake-up Radios, respectively, under intermittent ambient solar energy and over 2× longer receiver lifetime. 
    more » « less
  3. This paper proposes a framework to explore the op- timization of applications where a distributed set of nodes/sensors, e.g., automated vehicles, collaboratively exchange information over a network to achieve real-time situational-awareness. To that end we propose a reasonable proxy for the usefulness of possibly delayed sensor updates and their sensitivity to the network re- sources devoted to such exchanges. This enables us to study the joint optimization of (1) the application-level update rates, i.e., how often and when sensors update other nodes, and (2), the transmission resources allocated to, and resulting delays associated with, exchanging updates. We first consider a network scenario where nodes share a single resource, e.g., an ad hoc wireless setting where a cluster of nodes, e.g., platoon of vehicles, share information by broadcasting on a single collision domain. In this setting we provide an explicit solution characterizing the interplay between network congestion and situational awareness amongst heterogeneous nodes. We then extend this to a setting where such clusters can also exchange information via a base station. In this setting we characterize the optimal solution and develop a natural distributed algorithm based on exchanging congestion prices associated with sensor nodes’ update rates and associated network transmission rates. Preliminary numerical evaluation provides initial insights on the trade-offs associated with optimizing situational awareness and the proposed algorithm’s convergence. 
    more » « less
  4. null (Ed.)
    Collaborative sensing of spatio-temporal events/processes is at the basis of many applications including e.g., spectrum and environmental monitoring, and self-driving cars. A system leveraging spatially distributed possibly airborn sensing nodes can in principle deliver better coverage as well as possibly redundant views of the observed processes. This paper focuses on modeling, characterising and quantifying the benefits of optimal sensor activation/scanning policies in resource constrained settings, e.g., constraints tied to energy expenditures or the scanning capabilities of nodes. Under a natural model for the process being observed we show that a periodic sensor activation policy is optimal, and characterize the relative phases of such policies via an optimization problem capturing knowledge of the sensor geometry, sensor coverage sets, and spatio-temporal intensity and event durations. Numerical and simulation results for simple different sensor geometries exhibit how performance depends on the underlying processes. We also study the gap between optimal and randomized policies and how it scales with the density of sensors and resource constraints. 
    more » « less
  5. This article presents a study of two types of on-chip FPGA voltage sensors based on ring oscillators (ROs) and time-to-digital converter (TDCs), respectively. It has previously been shown that these sensors are often used to extract side-channel information from FPGAs without physical access. The performance of the sensors is evaluated in the presence of circuits that deliberately waste power, resulting in localized voltage drops. The effects of FPGA power supply features and sensor sensitivity in detecting voltage drops in an FPGA power distribution network (PDN) are evaluated for Xilinx Artix-7, Zynq 7000, and Zynq UltraScale+ FPGAs. We show that both sensor types are able to detect supply voltage drops, and that their measurements are consistent with each other. Our findings show that TDC-based sensors are more sensitive and can detect voltage drops that are shorter in duration, while RO sensors are easier to implement because calibration is not required. Furthermore, we present a new time-interleaved TDC design that sweeps the sensor phase. The new sensor generates data that can reconstruct voltage transients on the order of tens of picoseconds. 
    more » « less