In optical experiments, shutters are devices that open or close a path of light. They are often used to limit the duration of light exposure onto a target or onto a detector to reduce possible light-induced damage. Many commercial shutters are available for different applications – some provide very fast opening and closing times, some can handle large optical powers, and others allow for fail-safe operation. Many of these devices are costly and offer limited control options. Here we provide an open-source design for a low-cost, general purpose shutter system based on ubiquitous actuators (servo motors or solenoids) that are connected to an Arduino-based controller. Several shutters can be controlled by one controller, further reducing system cost. The state of the shutters can be controlled via a display built into the controller, by serial commands via USB, or by electrical control lines. The use of a microcontroller makes the shutter controller adaptable – only control options that are used need to be included, and the design accommodates a selection of display and actuator options. We provide designs for all required components, including 3D print files for the actuator holders and cases, the Arduino code, libraries for serial communication (C and python), and example graphical user interfaces for testing.
more »
« less
A low‐cost modular control system for multistressor experiments
Abstract Marine organisms and ecosystems face multiple, temporally variable stressors in a rapidly changing world. Realistic experiments that incorporate these aspects of physiological stress are important for advancing our ability to understand, predict, and manage their ecological impacts. However, the experimental systems needed to conduct such experiments can be costly. Here, we describe a low‐cost, modular control system that can be used with seawater sensors and actuators to dynamically manipulate multiple seawater variables. It enables researchers to run a variety of realistic multiple‐stressor, variable exposure experiments with a range of marine organisms. This tank controller system is based on the open‐source Arduino prototyping platform and features a custom‐made circuit board with a 16‐bit analog‐to‐digital converter, a real‐time clock, a MicroSD memory card reader, a high‐voltage transistor array, and solderless screw terminal connectors for easy connection of sensors, actuators, and power supplies. The assembly and use of this controller system does not require extensive electronics engineering or programming experience, and each module can be assembled for under 80 USD in parts. To demonstrate the system's capabilities, we present seawater manipulations from experiments involving (1) simultaneous manipulations of dissolved oxygen and pH; (2) fluctuating dissolved oxygen levels; and (3) a controlled stepwise decrease in dissolved oxygen at different temperatures. The low cost and high customizability of this Arduino‐based control system can contribute to expanding capacities for running global change experiments for researchers and students worldwide.
more »
« less
- PAR ID:
- 10455059
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Limnology and Oceanography: Methods
- Volume:
- 18
- Issue:
- 10
- ISSN:
- 1541-5856
- Page Range / eLocation ID:
- p. 623-634
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Changes in dissolved oxygen concentration can cause dramatic shifts in chemical, biological, and ecological processes in aquatic systems. In shallow coastal areas, this can happen on short timescales, with oxygen increasing during the day due to photosynthesis and declining at night due to respiration. We present a system controlled by an Arduino microprocessor that leverages the oxygen-consuming capacity of sediments to manipulate dissolved oxygen in an aquarium tank to planned concentrations. With minor adjustments to the Arduino code, the system can produce a variety of dissolved oxygen patterns, including a diel cycle. Designed to be user-friendly and scalable if needed, the system uses easily acquired, low-cost electronic and aquarium components. Its simplicity and accessibility permit deeper exploration of the effects of dissolved oxygen variability in aquatic systems, and the use of Arduino code and basic electronics makes it a potential tool for teaching experimental design and instrument fabrication.more » « less
-
High concentrations of certain nutrients, including phosphate, are known to lead to undesired algal growth and low dissolved oxygen levels, creating deadly conditions for organisms in marine ecosystems. The rapid and robust detection of these nutrients using a colorimetric, paper-based system that can be applied on-site is of high interest to individuals monitoring marine environments and others affected by marine ecosystem health. Several techniques for detecting phosphate have been reported previously, yet these techniques often suffer from high detection limits, reagent instability, and the need of the user to handle toxic reagents. In order to develop improved phosphate detection methods, the commonly used molybdenum blue reagents were incorporated into a paper-based, colorimetric detection system. This system benefited from improved stabilization of the molybdenum blue reagent as well as minimal user contact with toxic reagents. The colorimetric readout from the paper-based devices was analyzed and quantified using RGB analyses (via ImageJ), and resulted in the detection of phosphate at detection limits between 1.3 and 2.8 ppm in various aqueous media, including real seawater.more » « less
-
On minimal tests of sensor veracity for dynamic watermarking-based defense of cyber-physical systemsWe address the problem of security of cyber-physical systems where some sensors may be malicious. We consider a multiple-input, multiple-output stochastic linear dynamical system controlled over a network of communication and computational nodes which contains (i) a controller that computes the inputs to be applied to the physical plant, (ii) actuators that apply these inputs to the plant, and (iii) sensors which measure the outputs of the plant. Some of these sensors, however, may be malicious. The malicious sensors do not report the true measurements to the controller. Rather, they report false measurements that they fabricate, possibly strategically, so as to achieve any objective that they may have, such as destabilizing the closed-loop system or increasing its running cost. Recently, it was shown that under certain conditions, an approach of “dynamic watermarking” can secure such a stochastic linear dynamical system in the sense that either the presence of malicious sensors in the system is detected, or the malicious sensors are constrained to adding a distortion that can only be of zero power to the noise already entering the system. The first contribution of this paper is to generalize this result to partially observed MIMO systems with both process and observation noises, a model which encompasses some of the previous models for which dynamic watermarking was established to guarantee security. This result, similar to the prior ones, is shown to hold when the controller subjects the reported sequence of measurements to two particular tests of veracity. The second contribution of this paper is in showing, via counterexamples, that both of these tests are needed in order to secure the control system in the sense that if any one of these two tests of sensor veracity is dropped, then the above guarantee does not hold. The proposed approach has several potential applications, including in smart grids, automated transportation, and process control.more » « less
-
The work provides a general model of communication attacks on a networked infinite dimensional system. The system employs a network of inexpensive control units consisting of actuators, sensors and control processors. In an effort to replace a reduced number of expensive high-end actuating and sensing devices implementing an observer-based feedback, the alternate is to use multiple inexpensive actuators/sensors with static output feedback. In order to emulate the performance of the high-end devices, the controllers for the multiple actuator/sensors implement controllers which render the system networked. In doing so, they become prone to communication attacks either as accidental or deliberate actions on the connectivity of the control nodes. A single attack function is proposed which models all types of communication attacks and an adaptive detection scheme is proposed in order to (i) detect the presence of an attack, (ii) diagnose the attack and (iii) accommodate the attack via an appropriate control reconfiguration. The reconfiguration employs the adaptive estimates of the controller gains and restructure the controller adaptively in order to minimize the detrimental effects of the attack on closed-loop performance. Numerical studies on a 1D diffusion PDE employing networked actuator/sensor pairs are included in order to further convey the special architecture of detection and accommodation of networked systems under communication attacks.more » « less