Abstract Under broken time reversal symmetry such as in the presence of external magnetic field or internal magnetization, a transverse voltage can be established in materials perpendicular to both longitudinal current and applied magnetic field, known as classical Hall effect. However, this symmetry constraint can be relaxed in the nonlinear regime, thereby enabling nonlinear anomalous Hall current in time-reversal invariant materials – an underexplored realm with exciting new opportunities beyond classical linear Hall effect. Here, using group theory and first-principles theory, we demonstrate a remarkable ferroelectric nonlinear anomalous Hall effect in time-reversal invariant few-layer WTe2where nonlinear anomalous Hall current switches in odd-layer WTe2except 1T′ monolayer while remaining invariant in even-layer WTe2upon ferroelectric transition. This even-odd oscillation of ferroelectric nonlinear anomalous Hall effect was found to originate from the absence and presence of Berry curvature dipole reversal and shift dipole reversal due to distinct ferroelectric transformation in even and odd-layer WTe2. Our work not only treats Berry curvature dipole and shift dipole on an equal footing to account for intraband and interband contributions to nonlinear anomalous Hall effect, but also establishes Berry curvature dipole and shift dipole as new order parameters for noncentrosymmetric materials. The present findings suggest that ferroelectric metals and Weyl semimetals may offer unprecedented opportunities for the development of nonlinear quantum electronics.
more »
« less
Variability of Millennial‐Scale Trends in the Geomagnetic Axial Dipole
Abstract The historical trend in the axial dipole is sufficient to reverse the field in less than 2 kyr. Assessing the prospect of an imminent polarity reversal depends on the probability of sustaining the historical trend for long enough to produce a reversal. We use a stochastic model to predict the variability of trends for arbitrary time windows. Our predictions agree well with the trends computed from paleomagnetic models. Applying these predictions to the historical record shows that the current trend is likely due to natural variability. Furthermore, an extrapolation of the current trend for the next 1 to 2 kyr is highly unlikely. Instead, we compute the trend and time window needed to reverse the field with a specified probability. We find that the dipole could reverse in the next 20 kyr with a probability of 2%.
more »
« less
- Award ID(s):
- 1725798
- PAR ID:
- 10455127
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Geophysical Research Letters
- Volume:
- 46
- Issue:
- 24
- ISSN:
- 0094-8276
- Page Range / eLocation ID:
- p. 14450-14458
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Flash droughts are recently recognized subseasonal extreme climate phenomena, which develop with rapid onset and intensification and have significant socio‐environmental impacts. However, their historical trends and variability remain unclear largely due to the uncertainty associated with existing approaches. Here we comprehensively assessed trends, spatiotemporal variability, and drivers of soil moisture (SM) and evaporative demand (ED) flash droughts over the contiguous United States (CONUS) during 1981–2018 using hierarchical clustering, wavelet analysis, and bootstrapping conditional probability approaches. Results show that flash droughts occur in all regions in CONUS with Central and portions of the Eastern US showing the highest percentage of weeks in flash drought. ED flash drought trends are significantly increasing in all regions, while SM flash drought trends were relatively weaker across CONUS, with small significant increasing trends in the South and West regions and a decreasing trend in the Northeast. Rising ED flash drought trends are related to increasing temperature trends, while SM flash drought trends are strongly related to trends in weekly precipitation intensity besides weekly average precipitation and evapotranspiration. In terms of temporal variability, high severity flash droughts occurred every 2–7 years, corresponding with ENSO periods. For most CONUS regions, severe flash droughts occurred most often during La Niña and when the American Multidecadal Oscillation was in a positive phase. Pacific Decadal Oscillation negative phases and Artic Oscillation positive phases were also associated with increased flash drought occurrences in several regions. These findings may have implications for informing long‐term flash drought predictions and adaptations.more » « less
-
Abstract In recent decades, Arctic-amplified warming and sea-ice loss coincided with a prolonged wintertime Eurasian cooling trend. This observed Warm Arctic–Cold Eurasia pattern has occasionally been attributed to sea-ice forced changes in the midlatitude atmospheric circulation, implying an anthropogenic cause. However, comprehensive climate change simulations do not produce Eurasian cooling, instead suggesting a role for unforced atmospheric variability. This study seeks to clarify the source of this model-observation discrepancy by developing a statistical approach that enables direct comparison of Arctic-midlatitude interactions. In both historical simulations and observations, we first identify Ural blocking as the primary causal driver of sea ice, temperature, and circulation anomalies consistent with the Warm Arctic–Cold Eurasia pattern. Next, we quantify distinct transient responses to this Ural blocking, which explain the model-observation discrepancy in historical Eurasian temperature. Observed 1988–2012 Eurasian cooling occurs in response to a pronounced positive trend in Ural sea-level pressure, temporarily masking long-term midlatitude warming. This observed sea-level pressure trend lies at the outer edge of simulated variability in a fully coupled large ensemble, where smaller sea-level pressure trends have little impact on the ensemble mean temperature trend over Eurasia. Accounting for these differences bring observed and simulated trends into remarkable agreement. Finally, we quantify the influence of sea-ice loss on the magnitude of the observed Ural sea-level pressure trend, an effect that is absent in historical simulations. These results illustrate that sea-ice loss and tropospheric variability can both play a role in producing Eurasian cooling. Furthermore, by conducting a direct model-observation comparison, we reveal a key difference in the causal structures characterizing the Warm Arctic–Cold Eurasia Pattern, which will guide ongoing efforts to explain the lack of Eurasian cooling in climate change simulations.more » « less
-
We consider a stochastic differential equation model for Earth's axial magnetic dipole field. The model's parameters are estimated using diverse and independent data sources that had previously been treated separately. The result is a numerical model that is informed by the full paleomagnetic record on kyr to Myr time scales and whose outputs match data of Earth's dipole in a precisely defined feature-based sense. Specifically, we compute model parameters and associated uncertainties that lead to model outputs that match spectral data of Earth's axial magnetic dipole field but our approach also reveals difficulties with simultaneously matching spectral data and reversal rates. This could be due to model deficiencies or inaccuracies in the limited amount of data. More generally, the approach we describe can be seen as an example of an effective strategy for combining diverse data sets that is particularly useful when the amount of data is limited.more » « less
-
Abstract High‐impact poor air quality events, such as Beijing's so‐called “Airpocalypse” in January 2013, demonstrate that short‐lived poor air quality events can have significant effects on health and economic vitality. Poor air quality events result from the combination of the emission of pollutants and meteorological conditions favorable to their accumulation, which include limited scavenging, dispersion, and ventilation. The unprecedented nature of events such as the 2013 Airpocalypse, in conjunction with our nonstationary climate, motivate an assessment of whether climate change has altered the meteorological conditions conducive to poor winter air quality in Beijing. Using three indices designed to quantify the meteorological conditions that support poor air quality and drawing on the attribution methods of Diffenbaugh et al. (2017,https://doi.org/10.1073/pnas.1618082114), we assess (i) the contribution of observed trends to the magnitude of events, (ii) the contribution of observed trends to the probability of events, (iii) the return interval of events in the observational record, preindustrial model‐simulated climate and historical model‐simulated climate, (iv) the probability of the observed trend in the preindustrial and historical model‐simulated climates, and (v) the relative influences of anthropogenic forcing and natural variability on the observed trend. We find that anthropogenic influence has had a small effect on the probability of the January 2013 event in all three indices but has increased the probability of a long‐term positive trend in two out of three indices. This work provides a framework for both further understanding the role of climate change in air quality and expanding the scope of event attribution.more » « less
An official website of the United States government
