skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Geochemical and Stratigraphic Analysis of the Chisana Formation, Wrangellia Terrane, Eastern Alaska: Insights Into Early Cretaceous Magmatism and Tectonics Along the Northern Cordilleran Margin
Abstract The Chisana Formation consists of Lower Cretaceous volcanic rocks that occur in the Nutzotin Mountains of eastern Alaska. New stratigraphic analysis indicates that the volcanic succession is >2 km thick at the Bonanza Creek type section. We present stratigraphic, geochemical, Sr‐Nd‐Pb isotope, and U‐Pb age data from samples collected from various stratigraphic levels of the Chisana Formation. We demonstrate that the Chisana Formation can be divided into a lower subaqueous unit, a middle transitional unit, and an upper subaerial unit. Chisana Formation lavas range from transitional to subalkaline basalts through andesites. Trace element geochemistry shows high field strength element depletions relative to large ion lithophile elements and hydrous mineral assemblages with calc‐alkaline to tholeiitic chemistries, all consistent with a magmatic arc origin. Chisana lavas yield geochemical compositions and isotope characteristics that overlap with magmas from volcanic suites formed within juvenile continental crust and immature island arcs. Volcanism occurred between ~131 and 117 Ma judging from previously reported lava ages and new U‐Pb ages of detrital zircons recovered from sandstones that conformably underlie the lowermost Chisana Formation lavas. Our results support existing tectonic models in which an east dipping subduction zone existed beneath Wrangellia during Early Cretaceous time. The upsection shift from marine to terrestrial depositional conditions in the Chisana Formation and the overlying ~117–93 Ma Beaver Lake Formation was coincident with regional shortening. Together, the geologic evidence for shortening and terrestrial deposition are interpreted to reflect accretion/suturing of Wrangellia against inboard terranes.  more » « less
Award ID(s):
1450730
PAR ID:
10455361
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Tectonics
Volume:
39
Issue:
8
ISSN:
0278-7407
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The Nutzotin basin of eastern Alaska consists of Upper Jurassic through Lower Cretaceous siliciclastic sedimentary and volcanic rocks that depositionally overlie the inboard margin of Wrangellia, an accreted oceanic plateau. We present igneous geochronologic data from volcanic rocks and detrital geochronologic and paleontological data from nonmarine sedimentary strata that provide constraints on the timing of deposition and sediment provenance. We also report geochronologic data from a dike injected into the Totschunda fault zone, which provides constraints on the timing of intra–suture zone basinal deformation. The Beaver Lake formation is an important sedimentary succession in the northwestern Cordillera because it provides an exceptionally rare stratigraphic record of the transition from marine to nonmarine depositional conditions along the inboard margin of the Insular terranes during mid-Cretaceous time. Conglomerate, volcanic-lithic sandstone, and carbonaceous mudstone/shale accumulated in fluvial channel-bar complexes and vegetated overbank areas, as evidenced by lithofacies data, the terrestrial nature of recovered kerogen and palynomorph assemblages, and terrestrial macrofossil remains of ferns and conifers. Sediment was eroded mainly from proximal sources of upper Jurassic to lower Cretaceous igneous rocks, given the dominance of detrital zircon and amphibole grains of that age, plus conglomerate with chiefly volcanic and plutonic clasts. Deposition was occurring by ca. 117 Ma and ceased by ca. 98 Ma, judging from palynomorphs, the youngest detrital ages, and ages of crosscutting intrusions and underlying lavas of the Chisana Formation. Following deposition, the basin fill was deformed, partly eroded, and displaced laterally by dextral displacement along the Totschunda fault, which bisects the Nutzotin basin. The Totschunda fault initiated by ca. 114 Ma, as constrained by the injection of an alkali feldspar syenite dike into the Totschunda fault zone. These results support previous interpretations that upper Jurassic to lower Cretaceous strata in the Nutzotin basin accumulated along the inboard margin of Wrangellia in a marine basin that was deformed during mid-Cretaceous time. The shift to terrestrial sedimentation overlapped with crustal-scale intrabasinal deformation of Wrangellia, based on previous studies along the Lost Creek fault and our new data from the Totschunda fault. Together, the geologic evidence for shortening and terrestrial deposition is interpreted to reflect accretion/suturing of the Insular terranes against inboard terranes. Our results also constrain the age of previously reported dinosaur footprints to ca. 117 Ma to ca. 98 Ma, which represent the only dinosaur fossils reported from eastern Alaska. 
    more » « less
  2. The Alaska Range suture zone exposes Cretaceous to Quaternary marine and nonmarine sedimentary and volcanic rocks sandwiched between oceanic rocks of the accreted Wrangellia composite terrane to the south and older continental terranes to the north. New U-Pb zircon ages, 40Ar/39Ar, ZHe, and AFT cooling ages, geochemical compositions, and geological field observations from these rocks provide improved constraints on the timing of Cretaceous to Miocene magmatism, sedimentation, and deformation within the collisional suture zone. Our results bear on the unclear displacement history of the seismically active Denali fault, which bisects the suture zone. Newly identified tuffs north of the Denali fault in sedimentary strata of the Cantwell Formation yield ca. 72 to ca. 68 Ma U-Pb zircon ages. Lavas sampled south of the Denali fault yield ca. 69 Ma 40Ar/39Ar ages and geochemical compositions typical of arc assemblages, ranging from basalt-andesite-trachyte, relatively high-K, and high concentrations of incompatible elements attributed to slab contribution (e.g., high Cs, Ba, and Th). The Late Cretaceous lavas and bentonites, together with regionally extensive coeval calc-alkaline plutons, record arc magmatism during contractional deformation and metamorphism within the suture zone. Latest Cretaceous volcanic and sedimentary strata are locally overlain by Eocene Teklanika Formation volcanic rocks with geochemical compositions transitional between arc and intraplate affinity. New detrital-zircon data from the modern Teklanika River indicate peak Teklanika volcanism at ca. 57 Ma, which is also reflected in zircon Pb loss in Cantwell Formation bentonites. Teklanika Formation volcanism may reflect hypothesized slab break-off and a Paleocene–Eocene period of a transform margin configuration. Mafic dike swarms were emplaced along the Denali fault from ca. 38 to ca. 25 Ma based on new 40Ar/39Ar ages. Diking along the Denali fault may have been localized by strike-slip extension following a change in direction of the subducting oceanic plate beneath southern Alaska from N-NE to NW at ca. 46–40 Ma. Diking represents the last recorded episode of significant magmatism in the central and eastern Alaska Range, including along the Denali fault. Two tectonic models may explain emplacement of more primitive and less extensive Eocene–Oligocene magmas: delamination of the Late Cretaceous–Paleocene arc root and/or thickened suture zone lithosphere, or a slab window created during possible Paleocene slab break-off. Fluvial strata exposed just south of the Denali fault in the central Alaska Range record synorogenic sedimentation coeval with diking and inferred strike-slip displacement. Deposition occurred ca. 29 Ma based on palynomorphs and the youngest detrital zircons. U-Pb detrital-zircon geochronology and clast compositional data indicate the fluvial strata were derived from sedimentary and igneous bedrock presently exposed within the Alaska Range, including Cretaceous sources presently exposed on the opposite (north) side of the fault. The provenance data may indicate ~150 km or more of dextral offset of the ca. 29 Ma strata from inferred sediment sources, but different amounts of slip are feasible. Together, the dike swarms and fluvial strata are interpreted to record Oligocene strike-slip movement along the Denali fault system, coeval with strike-slip basin development along other segments of the fault. Diking and sedimentation occurred just prior to the onset of rapid and persistent exhumation ca. 25 Ma across the Alaska Range. This phase of reactivation of the suture zone is interpreted to reflect the translation along and convergence of southern Alaska across the Denali fault driven by highly coupled flat-slab subduction of the Yakutat microplate, which continues to accrete to the southern margin of Alaska. Furthermore, a change in Pacific plate direction and velocity at ca. 25 Ma created a more convergent regime along the apex of the Denali fault curve, likely contributing to the shutting off of near-fault extension- facilitated arc magmatism along this section of the fault system and increased exhumation rates. 
    more » « less
  3. The Kootenai Formation of Western Montana records the Aptian- Albian (121.4Ma-100.5Ma), a significant interval in Earth’s history. The Early Cretaceous is notable for a multitude of changes in both the geologic and biotic realm. Significant events that occurred during this time include the tectonic evolution of the Western Interior Basin (WIB) and the displacement of gymnosperms by angiosperms. Given the significance of this time, previous and ongoing research seek to better understand the timing and interactions between these changes. The focus of this study is to refine stratigraphic constraint of the Kootenai Formation using carbon isotope chemostratigraphy. The depositional age of the lower clastic unit of the Kootenai formation has been debated over the past decade. Detrital zircon U-Pb analyses by Laskowski et al. (2013) indicated an Albian age with a U-Pb detrital zircon maximum depositional age (MDA) of 109Ma. However, more recent studies (Finezl and Rosenblume, 2020 and Rosenblume et al. 2021) using LA-ICP-MS-generated detrital zircon U-Pb analyses indicate MDAs of the lower clastic unit as old as Valanginian to Aptian (MDAs ~135-115Ma) with the upper units of the Kootenai having MDAs from Albian (~105 Ma). Detrital zircon U-Pb analyses have generally been limited in the lower units of the Kootenai particularly because syndepositionally formed zircon grains are not common in the lower units (Quin et al. 2018, Finzel and Rosenblume 2020).Additionally, previous flora in the Kootenai suggests predominately Aptian and older ages(Brown 1946). Given the limited geochronologic constraint of the lower clastic unit of the Kootenai formation, addition data is needed. For this study, approximately 60 samples from just above the basal conglomerate to the top of the lower clastic unit were collected and processed to determine bulk organic carbon isotope values. The prior MDAs suggest C isotope excursions such as those associated with OAE1a and even as old as the Valanginian Weissert event could be preserved in the strata of the lower clastic unit. The new stable isotope data will provide an opportunity to refine the age of these Cretaceous units leveraging the existing U-Pb data. 
    more » « less
  4. Periods of cessation, resumption and enhanced arc activity are recorded in the Cretaceous igneous rocks of the Antarctic Peninsula. We present new geochronological (laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) zircon U–Pb) analyses of 36 intrusive and volcanic Cretaceous rocks, along with LA-ICP-MS apatite U–Pb analyses (a medium-temperature thermochronometer) of 28 Triassic–Cretaceous igneous rocks of the Antarctic Peninsula. These are complemented by new zircon Hf isotope data along with whole-rock geochemistry and isotope (Nd, Sr and Pb) data. Our results indicate that the Cretaceous igneous rocks of the Antarctic Peninsula have geochemical signatures consistent with a continental arc setting and were formed during the interval c. 140–79 Ma, whereas the main peak of magmatism occurred during c. 118–110 Ma. Trends in ε Hf t (zircon) combined with elevated heat flow that remagnetized rocks and reset apatite U–Pb ages suggest that Cretaceous magmatism formed within a prevailing extensional setting that was punctuated by periods of compression. A noteworthy compressive period probably occurred during c. 147–128 Ma, triggered by the westward migration of South America during opening of the South Atlantic Ocean. Cretaceous arc rocks that crystallized during c. 140–100 Ma define a belt that extends from southeastern Palmer Land to the west coast of Graham Land. This geographical distribution could be explained by (1) a flat slab with east-dipping subduction of the Phoenix Plate, or (2) west-dipping subduction of the lithosphere of the Weddell Sea, or (3) an allochthonous origin for the rocks of Alexander Island. A better understanding of the geological history of the pre-Cretaceous rocks of Alexander Island and the inaccessible area of the southern Weddell Sea is required. Supplementary material: A description of the methods used in this study and the complete dataset are available at https://doi.org/10.6084/m9.figshare.c.6089274 
    more » « less
  5. Abstract Tandem in situ and isotope dilution U-Pb analysis of zircons from pyroclastic volcanic rocks and both glacial and non-glacial sedimentary strata of the Pocatello Formation (Idaho, northwestern USA) provides new age constraints on Cryogenian glaciation in the North American Cordillera. Two dacitic tuffs sampled within glacigenic strata of the lower diamictite interval of the Scout Mountain Member yield high-precision chemical abrasion isotope dilution U-Pb zircon eruption and depositional ages of 696.43 ± 0.21 and 695.17 ± 0.20 Ma. When supplemented by a new high-precision detrital zircon maximum depositional age of ≤670 Ma for shoreface and offshore sandstones unconformably overlying the lower diamictite, these data are consistent with correlation of the lower diamictite to the early Cryogenian (ca. 717–660 Ma) Sturtian glaciation. These 670–675 Ma zircons persist in beds above the upper diamictite and cap dolostone units, up to and including a purported “reworked fallout tuff,” which we instead conclude provides only a maximum depositional age of ≤673 Ma from epiclastic volcanic detritus. Rare detrital zircons as young as 658 Ma provide a maximum depositional age for the upper diamictite and overlying cap dolostone units. This new geochronological framework supports litho- and chemostratigraphic correlations of the lower and upper diamictite intervals of the Scout Mountain Member of the Pocatello Formation with the Sturtian (716–660 Ma) and Marinoan (≤650–635 Ma) low-latitude glaciations, respectively. The Pocatello Formation thus contains a more complete record of Cryogenian glaciations than previously postulated. 
    more » « less