skip to main content

Title: A Mechanistic Study of Carbonic Anhydrase‐Enhanced Calcite Dissolution

Carbonic anhydrase (CA) has been shown to promote calcite dissolution (Liu, 2001,; Subhas et al., 2017,, and understanding the catalytic mechanism will facilitate our understanding of the oceanic alkalinity cycle. We use atomic force microscopy (AFM) to directly observe calcite dissolution in CA‐bearing solution. CA is found to etch the calcite surface only when in extreme proximity (~1 nm) to the mineral. Subsequently, the CA‐induced etch pits create step edges that serve as active dissolution sites. The possible catalytic mechanism is through the adsorption of CA on the calcite surface, followed by proton transfer from the CA catalytic center to the calcite surface during CO2hydration. This study shows that the accessibility of CA to particulate inorganic carbon (PIC) in the ocean is critical in properly estimating oceanic CaCO3and alkalinity cycles.

more » « less
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The West Pacific Warm Pool (WPWP)'s response to increasedpCO2during the Pliocene is a key model validation target. Different temperature proxies show different trends: The foraminiferal Mg/Ca sea surface temperature (SST) record shows Pliocene WPWP temperatures ~1.2°C cooler than today (Wara et al., 2005,, whereas a TEX86study finds a cooling trend and claims the Pliocene WPWP was warmer than today (Zhang et al., 2014, We focus on understanding biases in Mg/Ca data as the best way to constrain the temperature of the Pliocene WPWP. The strongest nonthermal controls on foraminiferal Mg/Ca are Mg/Ca of seawater and dissolution. Dissolution, which imparts a cool bias to Mg/Ca temperatures, depends on Δ[CO32−], the difference from the carbonate ion concentration needed for calcite saturation. Thus, Pliocene proxy discrepancies might stem from varying Δ[CO32−] over time. To constrain the effect of changing dissolution on the Mg/Ca data, we collected benthic foraminiferal B/Ca data (a proxy for Δ[CO32−]) from the WPWP spanning 0–5.5 Ma. We find no long‐term trend in Δ[CO32−], but variations above and below the threshold of foraminiferal dissolution yield an ~0.4°C cold bias when averaged over the middle to early Pliocene. Changes in seawater Mg/Ca create an ~0.6°C cold bias in the Pliocene Mg/Ca data. After accounting for these biases, we find that the Pliocene WPWP was ~0.1°C cooler than the late Holocene, ranging from −0.5°C to +0.5°C including all uncertainties. Our reconstruction shows a much lower east‐west temperature gradient in the Pliocene tropical Pacific than today, supporting a permanent El Niño‐like “El Padre” state.

    more » « less
  2. Abstract

    The objective of this comment is to correct two sets of statements in Litwin et al. (2022,, which consider our research work (Bonetti et al., 2018,; Bonetti et al., 2020, We clarify here that (a) the specific contributing area is defined in the limit of an infinitesimal contour length instead of the product of a reference contour width (Bonetti et al., 2018,, and (b) not all solutions obtained from the minimalist landscape evolution model of Bonetti et al. (2020, are rescaled copies of each other. We take this opportunity to demonstrate that the boundary conditions impact the obtained solutions, which has not been considered in the dimensional analysis of Litwin et al. (2022, We clarify this point by using dimensional analysis and numerical simulations for a square domain, where only one horizontal length scale (the side lengthl) enters the physical law.

    more » « less
  3. Abstract

    Hundreds of earthquakes were recorded during a nine‐month ocean bottom seismometer deployment surrounding Lō'ihi submarine volcano, Hawai'i. The 12‐station ocean bottom seismometer network widened the aperture of earthquake detection around the Big Island, allowing better constraints on the location of seismicity offshore Hawai'i. Although this deployment occurred during a time of volcanic quiescence for Lō'ihi, it establishes an important basis for background seismicity of the volcano. Offshore seismicity during this study was dominated by events located in the mantle fault zone at depths of 25–40 km. These events reflect rupture on preexisting faults in the lower lithosphere caused by stresses induced by volcano loading and flexure of the Pacific Plate (Pritchard et al., 2007,‐246X.2006.03169.x; Wolfe et al., 2004, Tomography was performed using double‐difference seismic tomography and showed shallow velocities to be slower than the regional velocity model (HG50; Klein, 1981,‐linear‐gradient‐crustal‐model‐for‐south‐Hawaii). A broad, low‐velocity anomaly was observed from 20–40‐km depth, and is suggestive of the central plume conduit that supplies magma to Lō'ihi and the active volcanoes of the Big Island. A localized high‐velocity body is observed 4–6‐km depth beneath Lō'ihi's summit, extending 10 km to the north and south. Following Lō'ihi's active rift zones and crossing the summit, this high‐velocity body is characteristic of intrusive material. Two low‐velocity anomalies are observed below the oceanic crust, interpreted as melt accumulation beneath Lō'ihi and magmatic underplating beneath Hawai'i Island.

    more » « less
  4. Abstract

    We examine the behavior of natural basaltic and trachytic samples during paleointensity experiments on both the original and laboratory‐acquired thermal remanences and characterize the samples using proxies for domain state including curvature (k) and the bulk domain stability parameters of Paterson (2011, and Paterson et al. (2017,, respectively. A curvature value of 0.164 (suggested by Paterson, 2011, as a critical threshold that separates single‐domain‐like remanences from multidomain‐like remanances on the original paleointensity data was used to separate samples into “straight” (single‐domain‐like) and “curved” (multidomain‐like) groups. Specimens from the two sample sets were given a “fresh” thermal remanent magnetization in a 70 μT field and subjected to an infield‐zerofield, zerofield‐infield (IZZI)‐type (Yu et al., 2004, paleointensity experiment. The straight sample set recovered the laboratory field with high precision while the curved set had much more scattered results (70.5 ± 1.5 and 71.9 ± 5.2 μT, respectively). The average intensity of both sets for straight and curved was quite close to the laboratory field of 70 μT, however, suggesting that if experiments contain a sufficient number of specimens, there does not seem to be a large bias in the field estimate. We found that the dependence of the laboratory thermal remanent magnetization on cooling rate was significant in most samples and did not depend on domain states inferred from proxies based on hysteresis measurements and should be estimated for all samples whose cooling rates differ from that used in the laboratory.

    more » « less
  5. Abstract

    Molnar and England (1990, introduced equations using a semianalytical approach that approximate the thermal structure of the forearc regions in subduction zones. A detailed new comparison with high‐resolution finite element models shows that the original equations provide robust predictions and can be improved by a few modifications that follow from the theoretical derivation. The updated approximate equations are shown to be quite accurate for a straight‐dipping slab that is warmed by heat flowing from its base and by shear heating at its top. The approximation of radiogenic heating in the crust of the overriding plate is less accurate but the overall effect of this heating mode is small. It is shown that the previous and updated approximate equations become increasingly inaccurate with decreasing thermal parameter and increasing variability of slab dip. It is also shown that the approximate equations cannot be extrapolated accurately past the brittle‐ductile transition. Conclusions in a recent paper (Kohn et al., 2018, that modest amount of shear heating can explain the thermal conditions of past subduction from the exhumed metamorphic rock record are invalid due to a number of compounding errors in the application of the Molnar and England (1990, equations past the brittle‐ductile transition. The use of the improved approximate equations is highly recommended provided their limitations are taken into account. For subduction zones with variable dip and/or low thermal parameter finite element modeling is recommended.

    more » « less