Abstract Agricultural landscapes are constantly changing as farmers adopt new production practices and respond to changing environmental conditions. Some of these changes alter landscape structure with impacts on natural pest control, pesticide use, and conservation of biodiversity. In rice agroecosystems the effect of landscape structure on natural enemies and pest suppression is often poorly understood. Here we investigate the effect of landscape composition and configuration on a key pest of rice, the brown planthopper ( Nilaparvata lugens ). Using N. lugens as sentinel prey coupled with predator exclusions, we investigated landscape effects on herbivore suppression and rice grain yield at multiple spatial scales in two regions of Bangladesh. Ladybird beetles and spiders were the most abundant natural enemies of N. lugens with landscape effects observed at all scales on ladybird beetles. Specifically, ladybird beetles were positively influenced by road edges, and fallow land, while spiders were strongly influenced only by rice phenology. Predator exclusion cages showed that N. lugens abundance significantly increased in caged plots, reducing rice gain yield. We also used an estimated biocontrol service index that showed a significant positive relationship with landscape diversity and a significant negative impact on pest density and yield loss. These results suggest that promoting fallow lands and fragmented patches between rice fields could lead to more sustainable insect pest management in rice agroecosystems, potentially reducing the practice of prophylactic insecticide use. 
                        more » 
                        « less   
                    
                            
                            Landscape simplification increases vineyard pest outbreaks and insecticide use
                        
                    
    
            Abstract Diversifying agricultural landscapes may mitigate biodiversity declines and improve pest management. Yet landscapes are rarely managed to suppress pests, in part because researchers seldom measure key variables related to pest outbreaks and insecticides that drive management decisions. We used a 13‐year government database to analyse landscape effects on European grapevine moth (Lobesia botrana) outbreaks and insecticides acrossc. 400 Spanish vineyards. At harvest, we found pest outbreaks increased four‐fold in simplified, vineyard‐dominated landscapes compared to complex landscapes in which vineyards are surrounded by semi‐natural habitats. Similarly, insecticide applications doubled in vineyard‐dominated landscapes but declined in vineyards surrounded by shrubland. Importantly, pest population stochasticity would have masked these large effects if numbers of study sites and years were reduced to typical levels in landscape pest‐control studies. Our results suggest increasing landscape complexity may mitigate pest populations and insecticide applications. Habitat conservation represents an economically and environmentally sound approach for achieving sustainable grape production. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1850943
- PAR ID:
- 10455744
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Ecology Letters
- Volume:
- 24
- Issue:
- 1
- ISSN:
- 1461-023X
- Format(s):
- Medium: X Size: p. 73-83
- Size(s):
- p. 73-83
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            One promising approach to mitigate the negative impacts of insect pests in forests is to adapt forestry practices to create ecosystems that are more resistant and resilient to biotic disturbances. At the stand scale, local stand management practices often cause idiosyncratic effects on forest pests depending on the environmental context and the focal pest species. However, increasing tree diversity appears to be a general strategy for reducing pest damage across several forest types. At the landscape scale, increasing forest heterogeneity (e.g., intermixing different forest types and/or age classes) represents a promising frontier for improving forest resistance and resilience and for avoiding large-scale outbreaks. In addition to their greater resilience, heterogeneous forest landscapes frequently support a wide range of ecosystem functions and services. A challenge will be to develop cooperation and coordination among multiple actors at spatial scales that transcend historical practices in forest management.more » « less
- 
            Abstract In the tropics, smallholder farming characterizes some of the world's most biodiverse landscapes. Agroecology as a pathway to sustainable agriculture has been proposed and implemented in sub‐Saharan Africa, but the effects of agricultural practices in smallholder agriculture on biodiversity and ecosystem services are understudied. Similarly, the contribution of different landscape elements, such as shrubland or grassland cover, on biodiversity and ecosystem services to fields remains unknown.We selected 24 villages situated in landscapes with varying shrubland and grassland cover in Malawi. In each village, we assessed biodiversity of eight taxa and ecosystem services in relation to crop type, shrubland and grassland cover and the number of agroecological pest and soil management practices on smallholder's fields of different crop types (bean monoculture, maize‐bean intercrop and maize monoculture).Increasing shrubland cover altered carabid and soil bacteria communities. Carabid abundance increased in maize but decreased in intercrop and bean fields with increasing shrubland cover. Carabid abundance and richness and wasp abundance increased with soil management practices. Carabid, spider and parasitoid abundances were higher in bean monocultures, but this was modulated by surrounding shrubland cover. Natural enemy abundances in beans were especially high in landscapes with little shrubland, possibly leading to lower bean damage in monocultures compared to intercropped fields, whereas maize monocultures had higher damage. In maize, grassland cover and pest management practices were positively related to damage. Carabid abundance was higher fields with high bean damage, and increased carabid richness in fields with high maize damage. Parasitoid abundance was negatively associated with bean damage.Synthesis and application. Our results suggest that maintaining biodiversity and ecosystem services on smallholder farms is not achievable with a ‘one size fits all’ approach but should instead be adapted to the landscape context and the priorities of smallholders. Shrubland is important to maintain carabid and soil bacterial diversity, but legume cultivation beneficial to natural enemies could complement pest management in landscapes with a low shrubland cover. An increased number of agroecological soil management practices can lead to improved pest control while the effectiveness of agroecological pest management practices needs to be re‐evaluated.more » « less
- 
            Abstract The environmental fates and consequences of intensive sulfur (S) applications to croplands are largely unknown. In this study, we used S stable isotopes to identify and trace agricultural S from field-to-watershed scales, an initial and timely step toward constraining the modern S cycle. We conducted our research within the Napa River Watershed, California, US, where vineyards receive frequent fungicidal S sprays. We measured soil and surface water sulfate concentrations ([SO42−]) and stable isotopes (δ34S–SO42−), which we refer to in combination as the ‘S fingerprint’. We compared samples collected from vineyards and surrounding forests/grasslands, which receive background atmospheric and geologic S sources. Vineyardδ34S–SO42−values were 9.9 ± 5.9‰ (median ± interquartile range), enriched by ∼10‰ relative to forests/grasslands (−0.28 ± 5.7‰). Vineyards also had roughly three-fold higher [SO42−] than forests/grasslands (13.6 and 5.0 mg SO42−–S l−1, respectively). Napa Riverδ34S–SO42−values, reflecting the watershed scale, were similar to those from vineyards (10.5 ± 7.0‰), despite vineyard agriculture constituting only ∼11% of the watershed area. Combined, our results provide important evidence that agricultural S is traceable at field-to-watershed scales, a critical step toward determining the consequences of agricultural alterations to the modern S cycle.more » « less
- 
            Exposure to insecticides may contribute to global insect declines due to sublethal insecticide effects on non-target species. Thus far, much research on non-target insecticide effects has focused on neonicotinoids in a few bee species. Much less is known about effects on other insect taxa or newer insecticides, such as sulfoxaflor. Here, we studied the effects of an acute insecticide exposure on both olfactory and visual learning in free-moving Polistes fuscatus paper wasps. Wasps were exposed to a single, field realistic oral dose of either low dose imidacloprid, high dose imidacloprid, or sulfoxaflor. Then, visual and olfactory learning and short-term memory were assessed. We found that acute insecticide exposure influenced performance, as sulfoxaflor and high dose imidacloprid exposed wasps made fewer correct choices than control wasps. Notably, both visual and olfactory performance were similarly impaired. Wasps treated with high dose imidacloprid were also less likely to complete the learning assay than wasps from other treatment groups. Instead, wasps remained stationary and unmoving in the testing area, consistent with imidacloprid interfering with motor control. Finally, wasps treated with sulfoxaflor were more likely to die in the week after treatment than wasps in the other treatment groups. Our findings demonstrate that sublethal, field-realistic dosages of both neonicotinoid and sulfoximine-based insecticides impair wasp learning and short-term memory may have additional effects on survival and motor functioning. Insecticides have broadly detrimental effects on diverse non-target insects that may influence foraging effectiveness, pollination services, and ecosystem function.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
