skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 16 until 2:00 AM ET on Saturday, May 17 due to maintenance. We apologize for the inconvenience.


Title: Exploration Of Lossy Posture Classification Model Using In-Bed Flexible Pressure Sensors
Advances in flexible and printable sensor technologies have made it possible to use posture classification for providing timely services in digital healthcare, especially for bedsores or decubitus ulcers. However, managing a large amount of sensor data and ensuring accurate predictions can be challenging. While lossy compressors can reduce data volume, it is still unclear whether this would lead to losing important information and affect downstream application performance. In this paper, we propose LCDNN (Lossy Compression using Deep Neural Network) to reduce the size of sensor data and evaluate the performance of posture classification models. Our sensors, placed under hospital beds, have a thickness of just 0.4mm and collect pressure data from 28 sensors (7 by 4) at an 8 Hz cycle, categorizing postures into 4 types from 5 patients. Our evaluation, which includes reduced datasets by LCDNN, demonstrates that the results are promising.  more » « less
Award ID(s):
1751143
PAR ID:
10456004
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS)
Page Range / eLocation ID:
1 to 4
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Advancements in flexible and printable sensor technologies to overcome the limitations of conventional rigid counterparts offer an excellent opportunity to design various healthcare applications for humans, and their potential flexibility can be used in real-time health monitoring and personalized physical conditions with minimal or no inconvenience. However, managing a large volume of obtained sensor datasets and ensuring accurate predictions can take time and effort. While statistical analysis and the Pearson correlation coefficient can reduce data volume, whether this would lead to losing important information and affect downstream application performance is still being determined. In this paper, we use posture classification as an exemplar of timely services in digital healthcare, especially for bedsores or decubitus ulcers. Our sensors, placed under hospital beds, have a thickness of just 0.4mm and collect pressure data from 28 sensors (7 by 4) at an 8 Hz cycle, categorizing postures into 4 types from 5 patients. We then collected sensor data to explore the possibility of using a small number of pressure sensors for patient posture classification. Next, we apply a statistical analysis to the datasets obtained to select the featured sensor data cells and evaluate the performance of posture classification models on various groups of sensors. Our evaluation involves the analysis of reduced datasets through statistical methods and the Pearson correlation coefficient. The classification performance using datasets comprising 5 featured and 28 sensors are 0.93 and 0.99, respectively. These results suggest comparable performance and the viability of useful classifiers for both cases. Consequently, comparable posture classification performance can be achieved using only 17.9% of the entire dataset. 
    more » « less
  2. Smart manufacturing systems are considered the next generation of manufacturing applications. One important goal of the smart manufacturing system is to rapidly detect and anticipate failures to reduce maintenance cost and minimize machine downtime. This often boils down to detecting anomalies within the sensor data acquired from the system which has different characteristics with respect to the operating point of the environment or machines, such as, the RPM of the motor. In this paper, we analyze four datasets from sensors deployed in manufacturing testbeds. We detect the level of defect for each sensor data leveraging deep learning techniques. We also evaluate the performance of several traditional and ML-based forecasting models for predicting the time series of sensor data. We show that careful selection of training data by aggregating multiple predictive RPM values is beneficial. Then, considering the sparse data from one kind of sensor, we perform transfer learning from a high data rate sensor to perform defect type classification. We release our manufacturing database corpus (4 datasets) and codes for anomaly detection and defect type classification for the community to build on it. Taken together, we show that predictive failure classification can be achieved, paving the way for predictive maintenance. 
    more » « less
  3. Recent years have witnessed an upsurge of interest in lossy compression due to its potential to significantly reduce data volume with adequate exploitation of the spatiotemporal properties of IoT datasets. However, striking a balance between compression ratios and data fidelity is challenging, particularly when losing data fidelity impacts downstream data analytics noticeably. In this paper, we propose a lossy prediction model dealing with binary classification analytics tasks to minimize the impact of the error introduced due to lossy compression. We specifically focus on five classification algorithms for frost prediction in agricultural fields allowing preparation by the predictive advisories to provide helpful information for timely services. While our experimental evaluations reaffirm the nature of lossy compressions where allowing higher errors offers higher compression ratios, we also observe that the classification performance in terms of accuracy and F-1 score differs among all the algorithms we evaluated. Specifically, random forest is the best lossy prediction model for classifying frost. Lastly, we show the robustness of the lossy prediction model based on the data fidelity in prediction performance. 
    more » « less
  4. Automatic lying posture tracking is an important factor in human health monitoring. The increasing popularity of the wrist-based trackers provides the means for unobtrusive, affordable, and long-term monitoring with minimized privacy concerns for the end-users and promising results in detecting the type of physical activity, step counting, and sleep quality assessment. However, there is limited research on development of accurate and efficient lying posture tracking models using wrist-based sensor. Our experiments demonstrate a major drop in the accuracy of the lying posture tracking using wrist-based accelerometer sensor due to the unpredictable noise from arbitrary wrist movements and rotations while sleeping. In this paper, we develop a deep transfer learning method that improves performance of lying posture tracking using noisy data from wrist sensor by transferring the knowledge from an initial setting which contains both clean and noisy data. The proposed solution develops an optimal mapping model from the noisy data to the clean data in the initial setting using LSTM sequence regression, and reconstruct clean synthesized data in another setting where no noisy sensor data is available. This increases the lying posture tracking F1-Score by 24.9% for left-wrist and by 18.1% for right-wrist sensors comparing to the case without mapping. 
    more » « less
  5. Abstract In the modern industrial setting, there is an increasing demand for all types of sensors. The demand for both the quantity and quality of sensors is increasing annually. Our research focuses on thin-film nitrate sensors in particular, and it seeks to provide a robust method to monitor the quality of the sensors while reducing the cost of production. We are researching an image-based machine learning method to allow for real-time quality assessment of every sensor in the manufacturing pipeline. It opens up the possibility of real-time production parameter adjustments to enhance sensor performance. This technology has the potential to significantly reduce the cost of quality control and improve sensor quality at the same time. Previous research has proven that the texture of the topical layer (ion-selective membrane (ISM) layer) of the sensor directly correlates with the performance of the sensor. Our method seeks to use the correlation so established to train a learning-based system to predict the performance of any given sensor from a still photo of the sensor active region, i.e. the ISM. This will allow for the real-time assessment of every sensor instead of sample testing. Random sample testing is both costly in time and labor, and therefore, it does not account for all of the individual sensors. Sensor measurement is a crucial portion of the data collection process. To measure the performance of the sensors, the sensors are taken to a specialized lab to be measured for performance. During the measurement process, noise and error are unavoidable; therefore, we generated credibility data based on the performance data to show the reliability of each sensor performance signal at each sample time. In this paper, we propose a machine learning based method to predict sensor performance using image features extracted from the non-contact sensor images guided by the credibility data. This will eliminate the need to test every sensor as it is manufactured, which is not practical in a high-speed roll-to-roll setting, thus truely enabling a certify as built framework. 
    more » « less