Abstract Non‐volatile resistive switching (NVRS) is a widely available effect in transitional metal oxides, colloquially known as memristors, and of broad interest for memory technology and neuromorphic computing. Until recently, NVRS was not known in other transitional metal dichalcogenides (TMDs), an important material class owing to their atomic thinness enabling the ultimate dimensional scaling. Here, various monolayer or few‐layer 2D materials are presented in the conventional vertical structure that exhibit NVRS, including TMDs (MX2, M=transitional metal, e.g., Mo, W, Re, Sn, or Pt; X=chalcogen, e.g., S, Se, or Te), TMD heterostructure (WS2/MoS2), and an atomically thin insulator (h‐BN). These results indicate the universality of the phenomenon in 2D non‐conductive materials, and feature low switching voltage, large ON/OFF ratio, and forming‐free characteristic. A dissociation–diffusion–adsorption model is proposed, attributing the enhanced conductance to metal atoms/ions adsorption into intrinsic vacancies, a conductive‐point mechanism supported by first‐principle calculations and scanning tunneling microscopy characterizations. The results motivate further research in the understanding and applications of defects in 2D materials.
more »
« less
Thinnest Nonvolatile Memory Based on Monolayer h‐BN
Abstract 2D materials have attracted much interest over the past decade in nanoelectronics. However, it was believed that the atomically thin layered materials are not able to show memristive effect in vertically stacked structure, until the recent discovery of monolayer transition metal dichalcogenide (TMD) atomristors, overcoming the scaling limit to sub‐nanometer. Herein, the nonvolatile resistance switching (NVRS) phenomenon in monolayer hexagonal boron nitride (h‐BN), a typical 2D insulator, is reported. The h‐BN atomristors are studied using different electrodes and structures, featuring forming‐free switching in both unipolar and bipolar operations, with large on/off ratio (up to 107). Moreover, fast switching speed (<15 ns) is demonstrated via pulse operation. Compared with monolayer TMDs, the one‐atom‐thin h‐BN sheet reduces the vertical scaling to ≈0.33 nm, representing a record thickness for memory materials. Simulation results based on ab‐initio method reveal that substitution of metal ions into h‐BN vacancies during electrical switching is a likely mechanism. The existence of NVRS in monolayer h‐BN indicates fruitful interactions between defects, metal ions and interfaces, and can advance emerging applications on ultrathin flexible memory, printed electronics, neuromorphic computing, and radio frequency switches.
more »
« less
- Award ID(s):
- 1809017
- PAR ID:
- 10456462
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Materials
- Volume:
- 31
- Issue:
- 15
- ISSN:
- 0935-9648
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Recent studies of resistive switching devices with hexagonal boron nitride (h-BN) as the switching layer have shown the potential of two-dimensional (2D) materials for memory and neuromorphic computing applications. The use of 2D materials allows scaling the resistive switching layer thickness to sub-nanometer dimensions enabling devices to operate with low switching voltages and high programming speeds, offering large improvements in efficiency and performance as well as ultra-dense integration. These characteristics are of interest for the implementation of neuromorphic computing and machine learning hardware based on memristor crossbars. However, existing demonstrations of h-BN memristors focus on single isolated device switching properties and lack attention to fundamental machine learning functions. This paper demonstrates the hardware implementation of dot product operations, a basic analog function ubiquitous in machine learning, using h-BN memristor arrays. Moreover, we demonstrate the hardware implementation of a linear regression algorithm on h-BN memristor arrays.more » « less
-
Abstract Reliable and controllable growth of two-dimensional (2D) hexagonal boron nitride (h-BN) is essential for its wide range of applications. Substrate engineering is one of the critical factors that influence the growth of the epitaxial h-BN films. Here, we report the growth of monolayer h-BN on Ni (111) substrates incorporated with oxygen atoms via molecular beam epitaxy. It was found that the increase of incorporated oxygen concentration in the Ni substrate through a pretreatment process prior to the h-BN growth step would have an adverse effect on the morphology and growth rate of 2D h-BN. Under the same growth condition, h-BN monolayer coverage decreases exponentially as the amount of oxygen incorporated into Ni (111) increases. Density functional theory calculations and climbing image nudged elastic band (CI-NEB) method reveal that the substitutional oxygen atoms can increase the diffusion energy barrier of B and N atoms on Ni (111) thereby inhibiting the growth of h-BN films. As-grown large-area h-BN monolayer films and fabricated Al/h-BN/Ni (MIM) nanodevices were comprehensively characterized to evaluate the structural, optical and electrical properties of high-quality monolayers. Direct tunneling mechanism and high breakdown strength of ∼11.2 MV cm−1are demonstrated for the h-BN monolayers grown on oxygen-incorporated Ni (111) substrates, indicating that these films have high quality. This study provides a unique example that heterogeneous catalysis principles can be applied to the epitaxy of 2D crystals in solid state field. Similar strategies can be used to grow other 2D crystalline materials, and are expected to facilitate the development of next generation devices based on 2D crystals.more » « less
-
Abstract Electromigration in metal interconnects remains a significant challenge in the continued scaling of integrated circuits towards ever‐smaller single‐nanometer nodes. Conventional damascene architectures of barrier/liner layers and conducting metal cause inevitable compromises between device performance and feature dimensions. In contrast to contemporary barrier/liner materials (e.g., Co, Ta, and Ru), an ultrathin passivation layer that can effectively mitigate electromigration is needed. At the ultimate atomically‐thin limit, 2D materials are promising candidates given their exceptional mechanical properties and impermeability. Here, a facile and effective approach is presented to mitigating electromigration in copper (Cu) interconnects via passivation with insulating monolayer 2D hexagonal boron nitride (hBN). The hBN‐passivated Cu interconnects, compared to otherwise identical but bare Cu interconnects, exhibit on average a >20% higher breakdown current density and a >2600% longer lifetime (at a high current density of 5.4 × 107A cm−2). Post‐mortem metrology elucidates uniform conformal contact between the hBN‐passivated Cu interface and common failure features due to electromigration.more » « less
-
Abstract Monolayer molybdenum disulfide has been previously discovered to exhibit non-volatile resistive switching behavior in a vertical metal-insulator-metal structure, featuring ultra-thin sub-nanometer active layer thickness. However, the reliability of these nascent 2D-based memory devices was not previously investigated for practical applications. Here, we employ an electron irradiation treatment on monolayer MoS2film to modify the defect properties. Raman, photoluminescence, and X-ray photoelectron spectroscopy measurements have been performed to confirm the increasing amount of sulfur vacancies introduced by the e-beam irradiation process. The statistical electrical studies reveal the reliability can be improved by up to 1.5× for yield and 11× for average DC cycling endurance in the devices with a moderate radiation dose compared to unirradiated devices. Based on our previously proposed virtual conductive-point model with the metal ion substitution into sulfur vacancy, Monte Carlo simulations have been performed to illustrate the irradiation effect on device reliability, elucidating a clustering failure mechanism. This work provides an approach by electron irradiation to enhance the reliability of 2D memory devices and inspires further research in defect engineering to precisely control the switching properties for a wide range of applications from memory computing to radio-frequency switches.more » « less
An official website of the United States government
