skip to main content


Title: Anticipated changes to the snow season in Alaska: Elevation dependency, timing and extremes
Abstract

Snowfall and snow season length across Alaska control the surface hydrology and underlying soil properties and also influence near‐surface air temperature by changing the energy balance. Current projections of warming suggest that considerable change will occur to key snow parameters, possibly contributing to extensive infrastructure damage from thawing permafrost, an increased frequency of rain‐on‐snow events and reduced soil recharge in the spring due to shallow end‐of‐winter snowpack. This study investigates projected changes to mean annual snowfall, dates of snow onset and snowmelt and extreme snowfall for Alaska, using dynamically downscaled reanalysis and climate model simulations. These include the ERA‐Interim reanalysis from 1981 to 2010, and two Coupled Model Intercomparison Project Phase 5 models: Community Climate System Model version 4 (CCSM4) and Geophysical Fluid Dynamics Laboratory Climate Model version 3 (GFDL‐CM3) from 1981 to 2100. The analysis is presented in 30‐year periods (i.e., 1981–2010, 2011–2040, 2041–2070 and 2071–2100) with the future scenarios from Representative Concentration Pathway 8.5. Late‐century projections of average annual snowfall at low elevations (0–1,000 m) show decreases of 41.3 and 40.6% for CCSM4 and GFDL‐CM3, respectively. At high elevations (1,000–2,000 m), the reductions are smaller at 13.5 and 14.2%, respectively. End‐of‐winter snow‐water equivalent displays reductions at all elevations in the future periods. Snow season length is shortened due to later snow onset and earlier snowmelt; many locations in southwest Alaska no longer experience continuous winter snowpack by the late‐century period. Maximum 2‐day snowfall amounts are projected to decrease near Anchorage and Nome, while Fairbanks and Utqiaġvik (Barrow) show no significant trend.

 
more » « less
NSF-PAR ID:
10458788
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
International Journal of Climatology
Volume:
40
Issue:
1
ISSN:
0899-8418
Page Range / eLocation ID:
p. 169-187
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Climate change projections consistently demonstrate that warming temperatures and dwindling seasonal snowpack will elicit cascading effects on ecosystem function and water resource availability. Despite this consensus, little is known about potential changes in the variability of ecohydrological conditions, which is also required to inform climate change adaptation and mitigation strategies. Considering potential changes in ecohydrological variability is critical to evaluating the emergence of trends, assessing the likelihood of extreme events such as floods and droughts, and identifying when tipping points may be reached that fundamentally alter ecohydrological function. Using a single-model Large Ensemble with sophisticated terrestrial ecosystem representation, we characterize projected changes in the mean state and variability of ecohydrological processes in historically snow-dominated regions of the Northern Hemisphere. Widespread snowpack reductions, earlier snowmelt timing, longer growing seasons, drier soils, and increased fire risk are projected for this century under a high-emissions scenario. In addition to these changes in the mean state, increased variability in winter snowmelt will increase growing-season water deficits and increase the stochasticity of runoff. Thus, with warming, declining snowpack loses its dependable buffering capacity so that runoff quantity and timing more closely reflect the episodic characteristics of precipitation. This results in a declining predictability of annual runoff from maximum snow water equivalent, which has critical implications for ecosystem stress and water resource management. Our results suggest that there is a strong likelihood of pervasive alterations to ecohydrological function that may be expected with climate change. 
    more » « less
  2. Abstract Severe convective storms along the Front Range and eastern plains of Colorado frequently produce tornadoes and hail, leading to substantial damage and crop losses annually. Determination of future human exposure from these events must consider both changes in meteorological conditions and population dynamics. Projections of EF0 + tornadoes (on the enhanced Fujita scale) and severe [1.0+ in. (25.4+ mm)] hail reports out to the year 2100 are computed using convective parameter proxies generated from dynamically downscaled GFDL Climate Model, version 3 (GFDL CM3), output by the WRF Model for control and future climate scenarios. The proxies suggest that tornado and hail days in the region may increase by up to one tornado day and three hail days per year by 2100, with the greatest increases across northeastern Colorado. Using a spatially explicit Monte Carlo model, projected future frequency and spatial changes in tornadoes and hail are superimposed with population projections from the shared socioeconomic pathways (SSPs) to provide a range of possible scenarios for end-of-century human exposure to tornadoes and hailstorms. Changes in hazard frequency and spatial distribution may amplify human exposure up to 117% for tornadoes and 178% for hail in the region by 2100, although specific results are sensitive to uncertain combinations of future overlaps between hazard spatial distribution and population. Findings presented herein not only will provide the public, insurers, policy makers, land-use planners, and researchers with estimates of potential future tornado and hail impacts in the Front Range region, they also will allow the weather enterprise to better understand, prepare for, and communicate tornado and hail risk to eastern Colorado communities. 
    more » « less
  3. Abstract This paper describes the downscaling of an ensemble of 12 general circulation models (GCMs) using the Weather Research and Forecasting (WRF) Model at 12-km grid spacing over the period 1970–2099, examining the mesoscale impacts of global warming as well as the uncertainties in its mesoscale expression. The RCP8.5 emissions scenario was used to drive both global and regional climate models. The regional climate modeling system reduced bias and improved realism for a historical period, in contrast to substantial errors for the GCM simulations driven by lack of resolution. The regional climate ensemble indicated several mesoscale responses to global warming that were not apparent in the global model simulations, such as enhanced continental interior warming during both winter and summer as well as increasing winter precipitation trends over the windward slopes of regional terrain, with declining trends to the lee of major barriers. During summer there is general drying, except to the east of the Cascades. The 1 April snowpack declines are large over the lower-to-middle slopes of regional terrain, with small snowpack increases over the lower elevations of the interior. Snow-albedo feedbacks are very different between GCM and RCM projections, with the GCMs producing large, unphysical areas of snowpack loss and enhanced warming. Daily average winds change little under global warming, but maximum easterly winds decline modestly, driven by a preferential sea level pressure decline over the continental interior. Although temperatures warm continuously over the domain after approximately 2010, with slight acceleration over time, occurrences of temperature extremes increase rapidly during the second half of the twenty-first century. Significance Statement This paper provides a unique high-resolution view of projected climate change over the Pacific Northwest and does so using an ensemble of regional climate models, affording a look at the uncertainties in local impacts of global warming. The paper examines regional meteorological processes influenced by global warming and provides guidance for adaptation and preparation. 
    more » « less
  4. Climate models for the northeastern United States (U.S.) over the next century predict an increase in air temperature between 2.8 and 4.3 °C and a decrease in the average number of days per year when a snowpack will cover the forest floor (Hayhoe et al. 2007, 2008; Campbell et al. 2010). Studies of forest dynamics in seasonally snow-covered ecosystems have been primarily conducted during the growing season, when most biological activity occurs. However, in recent years considerable progress has been made in our understanding of how winter climate change influences dynamics in these forests. The snowpack insulates soil from below-freezing air temperatures, which facilitates a significant amount of microbial activity. However, a smaller snowpack and increased depth and duration of soil frost amplify losses of dissolved organic C and NO3- in leachate, as well as N2O released into the atmosphere. The increase in nutrient loss following increased soil frost cannot be explained by changes in microbial activity alone. More likely, it is caused by a decrease in plant nutrient uptake following increases in soil frost. We conducted a snow-removal experiment at Hubbard Brook Experimental Forest to determine the effects of a smaller winter snowpack and greater depth and duration of soil frost on trees, soil microbes, and arthropods. A number of publications have been based on these data: Comerford et al. 2013, Reinmann et al. 2019, Templer 2012, and Templer et al. 2012. These data were gathered as part of the Hubbard Brook Ecosystem Study (HBES). The HBES is a collaborative effort at the Hubbard Brook Experimental Forest, which is operated and maintained by the USDA Forest Service, Northern Research Station. Campbell JL, Ollinger SV, Flerchinger GN, Wicklein H, Hayhoe K, Bailey AS. Past and projected future changes in snowpack and soil frost at the Hubbard Brook Experimental Forest, New Hampshire, USA. Hydrological Processes. 2010; 24:2465–2480. Comerford DP, PG Schaberg, PH Templer, AM Socci, JL Campbell, and KF Wallin. 2013. Influence of experimental snow removal on root and canopy physiology of sugar maple trees in a northern hardwood forest. Oecologia 171:261-269. Hayhoe K, Wake CP, Huntington TG, Luo LF, Schwartz MD, Sheffield J, et al. Past and future changes in climate and hydrological indicators in the US Northeast. Climate Dynamics. 2007; 28:381–407. Hayhoe, K., Wake, C., Anderson, B. et al. Regional climate change projections for the Northeast USA. Mitig Adapt Strateg Glob Change 13, 425–436 (2008). https://doi.org/10.1007/s11027-007-9133-2. Reinmann AB, J Susser, EMC Demaria, PH Templer. 2019. Declines in northern forest tree growth following snowpack decline and soil freezing.  Global Change Biology 25:420-430. Templer PH. 2012. Changes in winter climate: soil frost, root injury, and fungal communities (Invited). Plant and Soil 35: 15-17 Templer PH , AF Schiller, NW Fuller, AM Socci, JL Campbell, JE Drake, and TH Kunz. 2012. Impact of a reduced winter snowpack on litter arthropod abundance and diversity in a northern hardwood forest ecosystem. Biology and Fertility of Soils 48:413-424. 
    more » « less
  5. Abstract

    The influence of climate change on the fitness of wild populations is often studied in the context of the spring onset of the reproductive season. This focus is relevant for climate influences on reproductive success, but neglects other fitness‐relevant periods (e.g., autumn preparation for overwintering). We examined variation in climate variables (temperature, rainfall, snowfall, and snowpack) across the full annual cycle of Columbian ground squirrels (Urocitellus columbianus) for 21 years. We investigated seasonal climate variables that were associated with fitness variables, climate variables that exhibited directional changes across the study period, and finally observed declines in fitness (−0.03 units/year; total decline = 37%) that were associated with directional changes in climate variables. Annual fitness of adult female ground squirrels was positively associated with spring temperature (= 0.69) and early summer rainfall (= 0.56) and negatively associated with spring snow conditions (= −0.44 to −0.66). Across the 21 years, spring snowmelt has become significantly delayed (= 0.48) and summer rainfall became significantly reduced (= −0.53). Using a standardized partial regression model, we found that directional changes in the timing of spring snowmelt and early summer rainfall (i.e., progressively drier summers) had moderate influences on annual fitness, with the latter statistically significant (ρ = −0.314 and 0.437, respectively). The summer period corresponds to prehibernation fattening of young and adult ground squirrels. Had we focused on a single point in time (viz. the onset of the breeding season), we would have underestimated the influences of climate change on our population. Rather, we obtained a comprehensive understanding of the influences of climate change on individual fitness by investigating the full lifecycle.

     
    more » « less