skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Double Yielding in Deformation of Semicrystalline Polymers
Abstract Different semicrystalline polymers including poly(l‐lactic acid), poly(ethylene terephthalate), syndiotactic polystyrene, and polyamide 12 are studied in terms of their mechanical response to uniaxial compression deformation. Apparent decoupling of yielding of amorphous and crystalline phases is identified as separate peaks in the stress–strain curve in the vicinity of the glass transition temperature. The same feature is also observed for the uniaxial extension of predrawn semicrystalline poly(ethylene terephthalate). It is indicated that in absence of a strong amorphous phase a semicrystalline polymer is unable to yield and undergo plastic deformation and it fails in a brittle manner in the uniaxial compression. Treating a semicrystalline polymer as a composite of amorphous and crystalline phases, putting emphasis on the crucial role of amorphous phase in acting as connectors between crystalline domains and indicating that the yielding of amorphous phase is a prerequisite for yielding of crystalline phase, work toward a better understanding of the mechanical properties of semicrystalline polymers at the molecular level is done.  more » « less
Award ID(s):
1905870
PAR ID:
10456823
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Macromolecular Chemistry and Physics
Volume:
221
Issue:
19
ISSN:
1022-1352
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Despite extensive research on piezoelectric polymers since the discovery of piezoelectric poly(vinylidene fluoride) (PVDF) in 1969, the fundamental physics of polymer piezoelectricity has remained elusive. Based on the classic principle of piezoelectricity, polymer piezoelectricity should originate from the polar crystalline phase. Surprisingly, the crystal contribution to the piezoelectric strain coefficientd31is determined to be less than 10%, primarily owing to the difficulty in changing the molecular bond lengths and bond angles. Instead, >85% contribution is from Poisson's ratio, which is closely related to the oriented amorphous fraction (OAF) in uniaxially stretched films of semicrystalline ferroelectric (FE) polymers. In this perspective, the semicrystalline structure–piezoelectric property relationship is revealed using PVDF‐based FE polymers as a model system. In melt‐processed FE polymers, the OAF is often present and links the crystalline lamellae to the isotropic amorphous fraction. Molecular dynamics simulations demonstrate that the electrostrictive conformation transformation of the OAF chains induces a polarization change upon the application of either a stress (the direct piezoelectric effect) or an electric field (the converse piezoelectric effect). Meanwhile, relaxor‐like secondary crystals in OAF (SCOAF), which are favored to grow in the extended‐chain crystal (ECC) structure, can further enhance the piezoelectricity. However, the ECC structure is difficult to achieve in PVDF homopolymers without high‐pressure crystallization. We have discovered that high‐power ultrasonication can effectively induce SCOAFin PVDF homopolymers to improve its piezoelectric performance. Finally, we envision that the electrostrictive OAF mechanism should also be applicable for other FE polymers such as odd‐numbered nylons and piezoelectric biopolymers. 
    more » « less
  2. Abstract The processing–structure–property relationship using poly(lactic acid) (PLA) and poly(ethylene terephthalate) (PET) is explored. Specifically, both pre‐extension and preshear of amorphous PLA and PET above their glass transition temperaturesTg, carried out in the affine deformation limit, can induce a specific type of cold crystallization during annealing, i.e., nanoconfined crystallization (NCC) where crystal sizes are limited to a nanoscopic scale in all dimensions so as to render the processed PLA and PET optically transparent. The new polymer structure after premelt deformation can show considerably enhanced mechanical properties. For example, premelt stretching produces geometric condensation of the chain network. This structural alternation can profoundly change the mechanical characteristics, e.g., turning brittle PLA ductile. In contrast, after preshear of amorphous PLA aboveTg, the NCC containing PLA remains brittle, showing the importance to have geometric condensation from processing. Both AFM imaging and SAXS measurements are performed to verify that premelt deformation of PLA and PET indeed results in NCC from annealing that permits the strain‐induced cold crystallization to take place on the length scale of the mesh size of the deformed chain network. 
    more » « less
  3. Abstract In order to apply polymer semiconductors to stretchable electronics, they need to be easily deformed under strain without being damaged. A small number of conjugated polymers, typically with semicrystalline packing structures, have been reported to exhibit mechanical stretchability. Herein, a method is reported to modify polymer semiconductor packing‐structure using a molecular additive, dioctyl phthalate (DOP), which is found to act as a molecular spacer, to be inserted between the amorphous chain networks and disrupt the crystalline packing. As a result, large‐crystal growth is suppressed while short‐range aggregations of conjugated polymers are promoted, which leads to an improved mechanical stretchability without affecting charge‐carrier transport. Due to the reduced conjugated polymer intermolecular interactions, strain‐induced chain alignment and crystallization are observed. By adding DOP to a well‐known conjugated polymer, poly[2,5‐bis(4‐decyltetradecyl)pyrrolo[3,4‐c]pyrrole‐1,4‐(2H,5H)‐dione‐(E)‐1,2‐di(2,2′‐bithiophen‐5‐yl)ethene] (DPPTVT), stretchable transistors are obtained with anisotropic charge‐carrier mobilities under strain, and stable current output under strain up to 100%. 
    more » « less
  4. Abstract Poly(vinylidene fluoride) (PVDF)‐based polymers demonstrate great potential for applications in flexible and wearable electronics but show low piezoelectric coefficients (e.g., −d33< 30 pC N−1). The effective improvement for the piezoelectricity of PVDF is achieved by manipulating its semicrystalline structures. However, there is still a debate about which component is the primary contributor to piezoelectricity. Therefore, current methods to improve the piezoelectricity of PVDF can be classified into modulations of the amorphous phase, the crystalline region, and the crystalline–amorphous interface. Here, the basic principles and measurements of piezoelectric coefficients for soft polymers are first discussed. Then, three different categories of structural modulations are reviewed. In each category, the physical understanding and strategies to improve the piezoelectric performance of PVDF are discussed. In particular, the crucial role of the oriented amorphous fraction at the crystalline–amorphous interface in determining the piezoelectricity of PVDF is emphasized. At last, the future development of high performance piezoelectric polymers is outlooked. 
    more » « less
  5. Crystallization from the melt is a critical process governing the properties of semi-crystalline polymeric materials. While structural analyses of melting and crystallization transitions in bulk polymers have been widely reported, in contrast, those in thin polymer films on solid supports have been underexplored. Herein, in situ Raman microscopy and self-modeling curve resolution (SMCR) analysis are applied to investigate the temperature-dependent structural changes in poly(ethylene oxide) (PEO) films during melting and crystallization phase transitions. By resolving complex overlapping sets of spectra, SMCR analysis reveals that the thermal transitions of 50 µm thick PEO films comprise two structural phases: an ordered crystalline phase and a disordered amorphous phase. The ordered structure of the crystalline PEO film entirely disappears as the polymer is heated; conversely, the disordered structure of the amorphous PEO film reverts to the ordered structure as the polymer is cooled. Broadening of the Raman bands was observed in PEO films above the melting temperature (67 °C), while sharpening of bands was observed below the crystallization temperature (45 °C). The temperatures at which these spectral changes occurred were in good agreement with differential scanning calorimetry (DSC) measurements, especially during the melting transition. The results illustrate that in situ Raman microscopy coupled with SMCR analysis is a powerful approach for unraveling complex structural changes in thin polymer films during melting and crystallization processes. Furthermore, we show that confocal Raman microscopy opens opportunities to apply the methodology to interrogate the structural features of PEO or other surface-supported polymer films as thin as 2 µm, a thickness regime beyond the reach of conventional thermal analysis techniques. 
    more » « less