skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Why are the Elemental Nonmetals (F 2 , Cl 2 , Br 2 , I 2 , S 8 , P 4 ) of so Many Hues or of Any Hues and Where is the Chromophore? Insight into Intera ‐X–X Bonds
Abstract A unique approach is used to relate the HOMO‐LUMO energy difference to the difference between the ionization potential (IP) and electron affinity (EA) to assist in deducing not only the colors, but also chromophores in elemental nonmetals. Our analysis focuses on compounds with lone pair electrons and σ electrons, namely X2(X = F, Cl, Br, I), S8and P4. For the dihalogens, the [IP – EA] energies are found to be: F2(12.58 eV), Cl2(8.98 eV), Br2(7.90 eV), I2(6.78 eV). We suggest that theinterahalogen X–X bond itself is the chromophore for these dihalogens, in which the light absorbed by the F2, Cl2, Br2, I2leads to longer wavelengths in the visible by a π → σ* transition. Trace impurities are a likely case of cyclic S8which contains amounts of selenium leading to a yellow color, where the [IP – EA] energy of S8is found to be 7.02 eV. Elemental P4with an [IP – EA] energy of 9.09 eV contains a tetrahedral and σ aromatic structure. In future work, refinement of the analysis will be required for compounds with π electrons and σ electrons, such as polycyclic aromatic hydrocarbons (PAHs).  more » « less
Award ID(s):
1856765
PAR ID:
10456866
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Photochemistry and Photobiology
Volume:
96
Issue:
5
ISSN:
0031-8655
Page Range / eLocation ID:
p. 1140-1143
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The photoelectron (PE) spectra of C6F5X– (X = Cl, Br, I) and computational results on the anions and neutrals are presented and compared to previously reported results on C6F6– [McGee, C. J. J. Phys. Chem. A 2023, 127, 8556–8565.]. The spectra all exhibit broad, vibrationally unresolved detachment transitions, indicating that the equilibrium structures of the anions are significantly different from the neutrals. The PE spectrum of C6F5Cl– exhibits a parallel photoelectron angular distribution (PAD), similar to that of the previously reported C6F6– spectrum, while the PE spectra of C6F5Br– and C6F5I– have isotropic PADs, and also exhibit a prominent X– PE feature due to photodissociation of C6F5X– resulting in X– formation. Identification of the C6F5X– detachment transition origins, which is equivalent to the neutral electron affinity (EA), in all three cases is difficult, since the broadness of the detachment feature is accompanied by vanishingly small detachment cross section near the origin. Upper limits on the EAs were determined to be 1.70 eV for C6F5Cl, 2.10 eV for C6F5Br, and 2.00 eV for C6F5I, all significantly higher than the 0.76 eV upper limit determined for C6F6 with the same experiment. The broad detachment transitions are consistent with computational results, which predict very large differences between the neutral and anionic C–X (X = Cl, Br, I) bond lengths. Based on differences between the MBIS atom charges in the anions and neutrals, the excess charge in the anion is on the unique C atom and X, in contrast to the nonplanar C2v structured C6F6– anion, for which the charge is delocalized over the molecule. In C6F5Cl–, the C–Cl bond is predicted to be bent out of the plane, while both C6F5Br– and C6F5I– are predicted to be planar on average. The impact of the interruption of the symmetry in the hexafluorobenzene neutral and anion on the molecular and electronic structure of C6F5X/C6F5X– is considered, as well as the possible dissociative state leading to X– (X = Br, I) formation, and the nature of the C–X bond. 
    more » « less
  2. Abstract The replacement of a CH group of benzene by a triel (Tr) atom places a positive region of electrostatic potential near the Tr atom in the plane of the aromatic ring. This σ‐hole can interact with an X lone pair of XCCH (X=F, Cl, Br, and I) to form a triel bond (TrB). The interaction energy between C5H5Tr and FCCH lies in the range between 2.2 and 4.4 kcal/mol, in the order Tr=B+cation above the ring pulls density toward itself and thus magnifies the Tr σ‐hole. The TrB to the XCCH nucleophile is thereby magnified as is the strength of the TrB. This positive cooperativity is particularly large for Tr=B. 
    more » « less
  3. null (Ed.)
    Using inelastic X-ray scattering beyond the dipole limit and hard X-ray photoelectron spectroscopy we establish the dual nature of the U 5 f electrons in U M 2 S i 2 (M = Pd, Ni, Ru, Fe), regardless of their degree of delocalization. We have observed that the compounds have in common a local atomic-like state that is well described by the U 5 f 2 configuration with the Γ 1 ( 1 ) and Γ 2 quasi-doublet symmetry. The amount of the U 5 f 3 configuration, however, varies considerably across the U M 2 S i 2 series, indicating an increase of U 5f itineracy in going from M = Pd to Ni to Ru and to the Fe compound. The identified electronic states explain the formation of the very large ordered magnetic moments in U P d 2 S i 2 and U N i 2 S i 2 , the availability of orbital degrees of freedom needed for the hidden order in U R u 2 S i 2 to occur, as well as the appearance of Pauli paramagnetism in U F e 2 S i 2 . A unified and systematic picture of the U M 2 S i 2 compounds may now be drawn, thereby providing suggestions for additional experiments to induce hidden order and/or superconductivity in U compounds with the tetragonal body-centered T h C r 2 S i 2 structure. 
    more » « less
  4. Abstract The correlation between lattice chemistry and cation migration in high‐entropy Li+conductors is not fully understood due to challenges in characterizing anion disorder. To address this issue, argyrodite family of Li+conductors, which enables structural engineering of the anion lattice, is investigated. Specifically, new argyrodites, Li5.3PS4.3Cl1.7−xBrx(0 ≤x≤ 1.7), with varying anion entropy are synthesized and X‐ray diffraction, neutron scattering, and multinuclear high‐resolution solid‐state nuclear magnetic resonance (NMR) are used to determine the resulting structures. Ion and lattice dynamics are determined using variable‐temperature multinuclear NMR relaxometry and maximum entropy method analysis of neutron scattering, aided by constrained ab initio molecular dynamics calculations. 15 atomic configurations of anion arrangements are identified, producing a wide range of local lattice dynamics. High entropy in the lattice structure, composition, and dynamics stabilize otherwise metastable Li‐deficient structures and flatten the energy landscape for cation migration. This resulted in the highest room‐temperature ionic conductivity of 26 mS cm−1and a low activation energy of 0.155 eV realized in Li5.3PS4.3Cl0.7Br, where anion disorder is maximized. This study sheds light on the complex structure–property relationships of high‐entropy superionic conductors, highlighting the significance of heterogeneity in lattice dynamics. 
    more » « less
  5. The solvothermal synthetic exploration of the Bi–S–halogen phase space resulted in the synthesis of two bismuth sulfohalides with common structural motifs. Bi 13 S 18 I 2 was confirmed to have the previously reported composition and crystal structure. In contrast, the bromide analogue was shown to have a formula of neither Bi 19 S 27 Br 3 nor Bi 13 S 18 Br 2 , in contrast to the previous reports. The composition, refined from single crystal X-ray diffraction and confirmed by elemental analysis, high-resolution powder X-ray diffraction, and total scattering, is close to Bi 13 S 17 Br 3 due to the partial S/Br substitution in the framework. Bi 13 S 18 I 2 and Bi 13 S 17 Br 3 are n -type semiconductors with similar optical bandgaps of ∼0.9 eV but different charge and heat transport properties. Due to the framework S/Br disorder, Bi 13 S 17 Br 3 exhibits lower thermal and electrical conductivities than the iodine-containing analogue. The high Seebeck coefficients and ultralow thermal conductivities indicate that the reported bismuth sulfohalides are promising platforms to develop novel thermoelectric materials. 
    more » « less