skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Enhancement in MS‐based peptide detection by microfluidic free‐flow zone electrophoresis
Abstract Matrix components are known to significantly alter the ionization of a target analyte in ESI‐based measurements particularly when working with complex biological samples. This issue however may be alleviated by extracting the analyte of interest from the original sample into a relatively simple matrix compatible with ESI mass‐spectrometric analysis. In this article, we report a microfluidic device that enables such extraction of small peptide molecules into an ESI‐compatible solvent stream significantly improving both the sensitivity and reproducibility of the measurements. The reported device realizes this analyte extraction capability based on the free‐flow zone electrophoretic fractionation process using a set of internal electrodes placed across the width of the analysis channel. Employing lateral electric fields and separation distances of 75 V/cm and 600 µm, respectively, efficient extraction of the model peptide human angiotensin II was demonstrated allowing a reduction in its detection limit by one to three orders of magnitude using the ESI‐MS method. The noted result was obtained in our experiments both for a relatively simple specimen comprising DNA strands and angiotensin II as well as for human serum samples spiked with the same model peptide.  more » « less
Award ID(s):
1808507
PAR ID:
10457451
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
ELECTROPHORESIS
Volume:
41
Issue:
7-8
ISSN:
0173-0835
Format(s):
Medium: X Size: p. 545-553
Size(s):
p. 545-553
Sponsoring Org:
National Science Foundation
More Like this
  1. RationaleFemtoamp and picoamp electrospray ionization (ESI) characteristics of a nonpolar solvent were explored. The direct ESI mass spectrometry analysis of chloroform extract solution enabled rapid analysis of perfluorinated sulfonic acid analytes in drinking water. MethodsNeat chloroform solvent and extracts were directly used in a typical wire‐in ESI setup using micrometer emitter tips. Ionization currents were measured with femtoamp sensitivity while ramping the spray voltage from 0 to −5000 V. Methanol was used as a comparison to illustrate the characteristics of electrospraying chloroform. The effects of spray voltage and inlet temperature were studied. A liquid–liquid extraction workflow was developed to analyze perfluorooctanoate sulfonate (PFOS) in drinking water using an ion‐trap mass spectrometer. ResultsThe ionization onset of chloroform solution was 41 ± 17 fA at 300 V. The ionization current gradually increased with voltage while remaining below 100 pA when using voltages up to −5000 V. The ion signal of PFOS was significantly enhanced to improve the limit of detection (LoD) to 25 ppt in chloroform. Coupled with a liquid–liquid extraction workflow, LoD of 0.38–5.1 ppt and a quantitation range of 5–400 ppt were achieved for perfluorinated sulfonic compounds in 1‐ml water samples. ConclusionsFemtoamp and picoamp modes expand the solvent compatibility range of ESI and can enable quantitative analysis in parts per trillion (ppt) concentrations. 
    more » « less
  2. null (Ed.)
    Use of electronic cigarettes is rapidly increasing among youth and young adults, but little is known regarding the long-term cardiopulmonary health impacts of these nicotine-containing devices. Our group has previously demonstrated that chronic, inhaled nicotine induces pulmonary hypertension (PH) and right ventricular (RV) remodeling in mice. These changes were associated with upregulated RV angiotensin-converting enzyme (ACE). Angiotensin II receptor blockers (ARBs) have been shown to reverse cigarette smoking-induced PH in rats. ACE inhibitor and ARB use in a large retrospective cohort of patients with PH is associated with improved survival. Here, we utilized losartan (an ARB specific for angiotensin II type 1 receptor) to further explore nicotine-induced PH. Male C57BL/6 mice received nicotine vapor for 12 h/day, and exposure was assessed using serum cotinine to achieve levels comparable to human smokers or electronic cigarette users. Mice were exposed to nicotine for 8 wk and a subset was treated with losartan via an osmotic minipump. Cardiac function was assessed using echocardiography and catheterization. Although nicotine exposure increased angiotensin II in the RV and lung, this finding was nonsignificant. Chronic, inhaled nicotine significantly increased RV systolic pressure and RV free wall thickness versus air control. These parameters were significantly lower in mice receiving both nicotine and losartan. Nicotine significantly increased RV internal diameter, with no differences seen between the nicotine and nicotine-losartan group. Neither nicotine nor losartan affected left ventricular structure or function. These findings provide the first evidence that antagonism of the angiotensin II type 1 receptor can ameliorate chronic, inhaled nicotine-induced PH and RV remodeling. NEW & NOTEWORTHY Chronic, inhaled nicotine causes pulmonary hypertension and right ventricular remodeling in mice. Treatment with losartan, an angiotensin II type 1 receptor antagonist, ameliorates nicotine-induced pulmonary hypertension and right ventricular remodeling. This novel finding provides preclinical evidence for the use of renin-angiotensin system-based therapies in the treatment of pulmonary hypertension, particularly in patients with a history of tobacco-product use. 
    more » « less
  3. Matrix effects can significantly impede the accuracy, sensitivity, and reliability of separation techniques presenting a formidable challenge to the analytical process. It is crucial to address matrix effects to achieve accurate and precise measurements in complex matrices. The multifaceted nature of matrix effects which can be influenced by factors such as target analyte, sample preparation protocol, composition, and choice of instrument necessitates a pragmatic approach when analyzing complex matrices. This review aims to highlight common challenges associated with matrix effects throughout the entire analytical process with emphasis on gas chromatography‐mass spectrometry, liquid chromatography‐mass spectrometry, and sample preparation techniques. These techniques are susceptible to matrix effects that could lead to ion suppression/enhancement or impact the analyte signal at various stages of the analytical workflow. The assessment, quantification, and mitigation of matrix effects are necessary in developing any analytical method. Strategies can be implemented to reduce or eliminate the matrix effect by changing the type of ionization, improving extraction and clean‐up methods, optimization of chromatography conditions, and corrective calibration methods. While development of an effective strategy to completely mitigate matrix effects remains elusive, an integrated approach that combines sample preparation, analytical extraction, and effective instrumental analysis remains the most promising avenue for identifying and resolving matrix effects. 
    more » « less
  4. RationaleNew ionization processes have been developed for biological mass spectrometry (MS) in which the matrix lifts the nonvolatile analyte into the gas phase as ions without any additional energy input. We rationalized that additional fundamental knowledge is needed to assess analytical utility for the field of synthetic polymers and additives. MethodsDifferent mass spectrometers (Thermo Orbitrap (Q‐)Exactive (Focus); Waters SYNAPT G2(S)) were employed. The formation of multiply charged polymer ions upon exposure of the matrix/analyte(/salt) sample to sub‐atmospheric pressure directly from the solid state and surfaces facilitates the use of advanced mass spectrometers for detection of polymeric materials including consumer products (e.g., gum). ResultsAstonishingly, using nothing more than a small molecule matrix compound (e.g., 2‐methyl‐2‐nitropropane‐1,3‐diol or 3‐nitrobenzonitrile) and a salt (e.g., mono‐ or divalent cation(s)), such samples upon exposure to sub‐atmospheric pressure transfer nonvolatile polymersandnonvolatile salts into the gas phase as multiply charged ions. These successes contradict the conventional understanding of ionization in MS, because can nonvolatile polymers be lifted in the gas phase as ions not only by as little as a volatile matrix but also by the salt required for ionizing the analyte through noncovalent metal cation adduction(s). Prototypevacuummatrix‐assisted ionization (vMAI) and automated sources using a contactless approach are demonstrated for direct analyses of synthetic polymers and plasticizers, minimizing the risk of contamination using direct sample introduction into the mass spectrometer vacuum. ConclusionsDirect ionization methods from surfaces without the need of high voltage, a laser, or even applied heat are demonstrated for characterization of detailed materials using (ultra)high‐resolution and accurate mass measurements enabled by the multiply charged ions extending the mass range of high‐performance mass spectrometers and use of a split probe sample introduction device. Our vision is that, with further development of fundamentals and dedicated sources, both spatial‐ and temporal‐resolution measurements are within reach if sensitivity is addressed for decreasing sample‐size measurements. 
    more » « less
  5. Abstract Polyproline II (PPII) peptide sequences are recognized as promising biomaterials because of their attractive antifouling properties. However, the mechanisms behind their antifouling behavior have not been fully characterized. In this work we show that PPII peptide coverage, controlled by adsorption time, significantly reduces the fouling of bovine serum albumin (BSA, a model foulant). In addition, guest residues introduced into the PPII sequence are shown to significantly impact BSA adsorption as well as human mesenchymal stem cell (hMSC) spreading. This research will help guide future PPII peptide designs for incorporation into novel biomaterials. Graphical abstract 
    more » « less