Abstract A controversial aspect of Pliocene (5.3–2.6 Ma) climate is whether El Niño‐like (El Padre) conditions, characterized by a reduced trans‐equatorial sea‐surface temperature (SST) gradient, prevailed across the Pacific. Evidence for El Padre is chiefly based on reconstructions of sea‐surface conditions derived from the oxygen isotope (δ18O) and Mg/Ca compositions of shells belonging to the planktic foraminiferTrilobatus sacculifer. However, fossil shells of this species are a mixture of multiple carbonate phases—pre‐gametogenic, gametogenic (reproductive), and diagenetic calcites—that formed under different physiological and/or environmental conditions and are averaged in conventional whole‐shell analyses. Through in situ measurements of micrometer‐scale domains within Pliocene‐aged shells ofT. sacculiferfrom Ocean Drilling Program Site 806 in the western equatorial Pacific, we show that the δ18O of gametogenic calcite is 0.6–0.8‰ higher than pre‐gametogenic calcite, while the Mg/Ca ratios of these two phases are the same. Both the whole‐shell and pre‐gametogenic Mg/Ca records indicate that average early Pliocene SSTs were ~1°C warmer than modern, with present‐day SSTs being established during the latest Pliocene and early Pleistocene (~3.0–2.0 Ma). The measurement of multiple calcite phases by whole‐shell δ18O analyses masks a late Pliocene to earliest Pleistocene (3.6–2.2 Ma) decrease in seawater δ18O (δ18Osw) values reconstructed from in situ pre‐gametogenic δ18O and Mg/Ca measurements. Our novel δ18Oswrecord indicates that sea‐surface salinities in the west Pacific warm pool were higher than modern prior to ~3.5 Ma, which is consistent with more arid conditions under an El Padre state.
more »
« less
Enhanced Poleward Flux of Atmospheric Moisture to the Weddell Sea Region (ODP Site 690) During the Paleocene‐Eocene Thermal Maximum
Abstract Earth's hydrological cycle was profoundly perturbed by massive carbon emissions during an ancient (56 Ma) global warming event referred to as the Paleocene‐Eocene thermal maximum (PETM). One approach to gaining valuable insight into the response of the hydrological cycle is to construct sea‐surface salinity (SSS) records that can be used to gauge changes in the rates of evaporation and precipitation during the PETM in such climatically sensitive areas as the circum‐Antarctic region. Here, we pair oxygen isotope (δ18O) and magnesium‐calcium (Mg/Ca) measurements to reconstruct PETM sea‐surface temperatures (SSTs) and δ18O composition of seawater (δ18Osw) at austral Site 690 (Weddell Sea). Several discrepancies emerge between the δ18O‐ and Mg/Ca‐based SST records, with the latter indicating that the earliest PETM was punctuated by a short‐lived ~4°C increase in local SSTs. Conversion of the δ18Oswvalues to SSS reveals a ~4 ppt decrease ~50 ka after peak PETM warming at Site 690. This negative SSS (δ18Osw) anomaly coincides with a prominent minimum in the planktic foraminifer δ18O record published for the Site 690 PETM section. Thus, our revised interpretation posits that this δ18O minimum signals a decrease in surface‐ocean δ18Oswfostered by a transient increase in mean annual precipitation in the Weddell Sea region. The results of this study corroborate the view that the poleward flux of atmospheric moisture temporarily increased during a distinctive stage of the PETM.
more »
« less
- PAR ID:
- 10457498
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Paleoceanography and Paleoclimatology
- Volume:
- 35
- Issue:
- 6
- ISSN:
- 2572-4517
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The Paleocene‐Eocene Thermal Maximum (PETM, ∼56 million years ago) is among the best‐studied climatic warming events in Earth history and is often compared to projected anthropogenic climate change. The PETM is characterized by a rapid negative carbon isotope excursion and global temperature increase of 4–5°C, accompanied by changes in spatial patterns of evaporation and precipitation in the global hydrologic cycle. Recent climate model reconstructions suggest a regionally complex and non‐linear response of one important aspect of global hydrology: enhanced moisture flux from the low‐latitude ocean. In this study, we use the elemental and stable isotope geochemistry of surface‐dwelling planktic foraminifera from a low‐latitude Atlantic deep‐sea sedimentary record (IODP Site 1258) to quantify changes in sea‐surface temperature (SST) and salinity. Foraminiferal Mg/Ca and δ18O values are interpreted with a Bayesian forward proxy system model to reconstruct how SST and salinity changed over the PETM at this site. These temperature and salinity reconstructions are then compared to recent climate model simulations of Eocene warming. Our reconstructions indicate °C of warming, in excellent agreement with estimates from other tropical locations and modeled PETM warmth. The regional change in salinity is not as straightforward, demonstrating a slight decrease at extremepCO2forcing (a reversal of the modeled sense of change under moderatepCO2forcing) in both model and proxy reconstructions. The cause of this non‐linear response is unclear but may relate to increased South American continental runoff or shifts in the Inter‐Tropical Convergence Zone.more » « less
-
Abstract Early Late Cretaceous (∼90–100 Ma) Sea surface temperatures (SST) records suggest extremely warm Southern Hemisphere high latitudes and a meridional gradient as low as 5°C, attributed to elevated atmospheric CO2. Climate models have been unable to reproduce such extreme warmth, questioning model performance and/or the validity of SSTs reconstructions. Indeed, the latter partly rely on the measurement of oxygen isotopic composition of marine organisms (δ18Oc), a proxy that requires knowledge of the δ18O of past seawater (δ18Osw). Here we use the water isotope‐enabled Community Earth System Model (iCESM1.2) to investigate how paleogeography and pCO2affect δ18Oswdistribution and our understanding of Cenomanian‐Turonian SSTs. Our simulations suggest that the semi‐isolation of southern South Atlantic‐Indian Ocean resulted in locally very negative δ18Oswexplaining low δ18Ocmeasured on planktonic foraminifera. Accounting for this δ18Oswspatio‐temporal variability increases the estimated meridional temperature gradient by 5°C and narrows the gap between model and proxy‐based reconstructions.more » « less
-
The Paleocene‐Eocene thermal maximum (PETM, 56 Ma) is an ancient global warming event closely coupled to the release of massive amounts of d13C‐depleted carbon into the ocean‐atmosphere system, making it an informative analogue for future climate change. However, uncertainty still exists regarding tropical sea‐surface temperatures (SSTs) in open ocean settings during the PETM. Here, we present the first paired d13C:Mg/Ca record derived in situ from relatively well‐preserved subdomains inside individual planktic foraminifer shells taken from a PETM record recovered in the central Pacific Ocean at Ocean Drilling Program Site 865. The d13C signature of each individual shell was used to confirm calcification during the PETM, thereby reducing the unwanted effects of sediment mixing that secondarily smooth paleoclimate signals constructed with fossil planktic foraminifer shells. This method of “isotopic screening” reveals that shells calcified during the PETM have elevated Mg/Ca ratios reflecting exceptionally warm tropical SSTs (∼33–34°C). The increase in Mg/Ca ratios suggests ∼6°C of warming, which is more congruent with SST estimates derived from organic biomarkers in PETM records at other tropical sites. These extremely warm SSTs exceed the maximum temperature tolerances of modern planktic foraminifers. Important corollaries to the findings of this study are (a) the global signature of PETM warmth was uniformly distributed across different latitudes, (b) our Mg/Ca‐based SST record may not capture peak PETM warming at tropical Site 865 due to the thermally‐induced ecological exclusion of planktic foraminifers, and (c) the record of such transitory ecological exclusion has been obfuscated by post‐depositional sediment mixing at Site 865.more » « less
-
Abstract Tropical Pacific seawater and precipitation stable oxygen isotope data aid in understanding modern oceanic and atmospheric interactions, and these data are particularly valuable as they are archived in isotope‐based paleoclimate records. However, the absence of modern seawater isotope time series limits the ability to identify the atmospheric influences on these data, precluding robust paleoclimate interpretations. We present a new 10 year sub‐monthly record of seawater and precipitation stable oxygen isotope values (δ18Oswand δ18Op) from Koror, Palau. Our dataset indicates that temporally, δ18Oswis strongly influenced by local δ18Op.Both monthly δ18Oswand δ18Opare highly correlated with outgoing longwave radiation across the tropical Pacific, reflecting a Walker Circulation imprint on the surface ocean. Changes in the Palau δ18Osw—salinity relationship correspond to NINO3.4 variability, indicating a difference in how these variables record El Niño Southern Oscillation (ENSO) information, but demonstrating the utility of δ18Oswto reconstruct ENSO variability in the western tropical Pacific.more » « less
An official website of the United States government
