skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Advances in Modeling Interactions Between Sea Ice and Ocean Surface Waves
Abstract Recent field programs have highlighted the importance of the composite nature of the sea ice mosaic to the climate system. Accordingly, we previously developed a process‐based prognostic model that captures key characteristics of the sea ice floe size distribution and its evolution subject to melting, freezing, new ice formation, welding, and fracture by ocean surface waves. Here we build upon this earlier work, demonstrating a new coupling between the sea ice model and ocean surface waves and a new physically based parameterization for new ice formation in open water. The experiments presented here are the first to include two‐way interactions between prognostically evolving waves and sea ice on a global domain. The simulated area‐average floe perimeter has a similar magnitude to existing observations in the Arctic and exhibits plausible spatial variability. During the melt season, wave fracture is the dominant FSD process driving changes in floe perimeter per unit sea ice area—the quantity that determines the concentration change due to lateral melt—highlighting the importance of wave‐ice interactions for marginal ice zone thermodynamics. We additionally interpret the results to target spatial scales and processes for which floe size observations can most effectively improve model fidelity.  more » « less
Award ID(s):
1643431
PAR ID:
10457874
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Advances in Modeling Earth Systems
Volume:
11
Issue:
12
ISSN:
1942-2466
Page Range / eLocation ID:
p. 4167-4181
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. Ocean surface waves play an important role in maintaining the marginal ice zone, a heterogenous region occupied by sea ice floes with variable horizontal sizes. The location, width, and evolution of the marginal ice zone are determined by the mutual interaction of ocean waves and floes, as waves propagate into the ice, bend it, and fracture it. In previous work, we developed a one-dimensional “superparameterized” scheme to simulate the interaction between the stochastic ocean surface wave field and sea ice. As this method is computationally expensive and not bitwise reproducible, here we use a pair of neural networks to accelerate this parameterization, delivering an adaptable, computationally inexpensive, reproducible approach for simulating stochastic wave–ice interactions. Implemented in the sea ice model CICE, this accelerated code reproduces global statistics resulting from the full wave fracture code without increasing computational overheads. The combined model, Wave-Induced Floe Fracture (WIFF v1.0), is publicly available and may be incorporated into climate models that seek to represent the effect of waves fracturing sea ice. 
    more » « less
  2. Abstract. In sea-ice-covered areas, the sea ice floe size distribution (FSD) plays an important role in many processes affecting the coupled sea–ice–ocean–atmosphere system. Observations of the FSD are sparse – traditionally taken via a painstaking analysis of ice surface photography – and the seasonal and inter-annual evolution of floe size regionally and globally is largely unknown. Frequently, measured FSDs are assessed using a single number, the scaling exponent of the closest power-law fit to the observed floe size data, although in the absence of adequate datasets there have been limited tests of this “power-law hypothesis”. Here we derive and explain a mathematical technique for deriving statistics of the sea ice FSD from polar-orbiting altimeters, satellites with sub-daily return times to polar regions with high along-track resolutions. Applied to the CryoSat-2 radar altimetric record, covering the period from 2010 to 2018, and incorporating 11 million individual floe samples, we produce the first pan-Arctic climatology and seasonal cycle of sea ice floe size statistics. We then perform the first pan-Arctic test of the power-law hypothesis, finding limited support in the range of floe sizes typically analyzed in photographic observational studies. We compare the seasonal variability in observed floe size to fully coupled climate model simulations including a prognostic floe size and thickness distribution and coupled wave model, finding good agreement in regions where modeled ocean surface waves cause sea ice fracture. 
    more » « less
  3. Abstract Marginal ice zones are composed of discrete sea‐ice floes, whose dynamics are not well captured by the continuum representation of sea ice in most climate models. This study makes use of an ocean large eddy simulation (LES) model, coupled to cylindrical sea‐ice floes, to investigate thermal and mechanical interactions between melt‐induced submesoscale features and sea‐ice floes, during summer conditions. We explore the sensitivity of sea‐ice melt rates and upper‐ocean turbulence properties to floe size, ice‐ocean drag, and surface winds. Under low wind conditions, upper ocean turbulence transports warm cyclonic filaments from the open ocean toward the center of the floes and enhances their basal melt. This heat transport is partially suppressed by trapping of ice within cold anticyclonic features. When winds are stronger, melt rates are enhanced by the decoupling of floes from the cold, melt‐induced lens underneath sea ice. Distinct dynamical regimes emerge in which the influence of warm filaments on sea‐ice melt is mitigated by the strength of ice‐ocean coupling and eddy size relative to floe size. Simple scaling laws, which may help parameterize these processes in coarse continuum‐based sea‐ice models, successfully capture floe melt rates under these limiting regimes. 
    more » « less
  4. Abstract. Identifying the processes that drive the rapid climatological retreat phase of Antarctica’s annual sea-ice cycle is crucial to understanding, modelling and attributing observed trends and recent high variability in sea-ice extent, and to projecting future sea-ice conditions and impacts accurately. To date, the rapid annual retreat of Antarctic sea ice each spring–summer has been largely attributed to lateral and basal melting of ice floes, enhanced by wave-induced breakup of large floes. Here, based on observations and modelling, we propose that waves play important additional roles in generating previously-neglected surface and interior melting, by removing snow from small floes, flooding them, and pulverising them into slush. Results here show a resultant estimated reduction in albedo by 0.38–0.54, that increases melting by 0.9–5.2 cm day-1 at 60–70o S compared to a snow-covered floe of first-year ice, and depending on surface type, wave-flooding coverage, latitude and ice density. Rapid proliferation of algae within and on the high-light and high-nutrient environment of the wave-modified ice reduces the albedo by a further 0.1 to increase the melt-rate enhancement to 1.1–6.1 cm day-1. Melting is further accelerated by a wave-induced ice–albedo feedback mechanism, similar to that associated with Arctic melt ponds but involving seawater rather than freshwater. This positive feedback is strengthened by ice-algal greening. Floe thinning and weakening by wave-melting initiate additional dynamic–thermodynamic feedbacks by increasing the likelihood of both wave-flooding and flexural breakup, leading to further floe melting. Wave melting and the associated physical–biological feedbacks will likely increase in importance in a predicted stormier and warmer Southern Ocean, and will also become more prevalent in a changing Arctic. There are implications for global weather and climate, the health of the ocean and its ecosystems, fisheries, ice-shelf stability and sea-level rise, atmospheric and oceanic biogeochemistry, and human activities. 
    more » « less
  5. Model output from CICE experiments with varying floe size distribution and wave physics</p>  </p> See manuscript below for further details:</p> Roach, L., C. Bitz, C. Horvat, and S. Dean (2019), Advances in modelling interactions between sea ice and ocean surface waves. Journal of Advances in Modeling Earth Systems (in review)</p> 
    more » « less