skip to main content


Title: Adjuvants that Empower the Action of Photodynamic Therapy
Abstract

Compounds have been devised whose supportive actions make them important adjuvants in the priming of photosensitization to selectively target cancer cells. Here, we highlight the paper by Maytin and Hasan in this issue ofPhotochemistry & Photobiology, which describes adjuvants methotrexate, 5‐fluorouracil, vitamin D and its analogs leading to improved photodynamic therapy outcome. These small molecule adjuvants act by different mechanisms to enhance the cytotoxicity in tumor cells and the therapeutic effect in cancers. These findings add to the list of strategies for enhancement of photodynamic therapy.

 
more » « less
Award ID(s):
1856765
NSF-PAR ID:
10457966
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Photochemistry and Photobiology
Volume:
96
Issue:
3
ISSN:
0031-8655
Page Range / eLocation ID:
p. 725-727
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We report noncovalent assemblies of iRGD peptides and methylene blue dyes via electrostatic and hydrophobic stacking. These resulting nanomaterials could bind to cancer cells, image them with photoacoustic signal, and then treat them via photodynamic therapy. We first assessed the optical properties and physical properties of the materials. We then evaluated their utility for live cell targeting, in vivo imaging, and in vivo photodynamic toxicity. We tuned the performance of iRGD by adding aspartic acid (DD) or tryptophan doublets (WW) to the peptide to promote electrostatic or hydrophobic stacking with methylene blue, respectively. The iRGD-DD led to 150-nm branched nanoparticles, but iRGD-WW produced 200-nm nano spheres. The branched particles had an absorbance peak that was redshifted to 720 nm suitable for photoacoustic signal. The nanospheres had a peak at 680 nm similar to monomeric methylene blue. Upon continuous irradiation, the nanospheres and branched nanoparticles led to a 116.62% and 94.82% increase in reactive oxygen species in SKOV-3 cells relative to free methylene blue at isomolar concentrations suggesting photodynamic toxicity. Targeted uptake was validated via competitive inhibition. Finally, we used in vivo bioluminescent signal to monitor tumor burden and the effect of for photodynamic therapy: The nanospheres had little impact versus controls (p = 0.089), but the branched nanoparticles slowed SKOV-3 tumor burden by 75.9% (p < 0.05).

     
    more » « less
  2. Abstract

    A critical issue in photodynamic therapy (PDT) is inadequate reactive oxygen species (ROS) generation in tumors, causing inevitable survival of tumor cells that usually results in tumor recurrence and metastasis. Existing photosensitizers frequently suffer from relatively low light‐to‐ROS conversion efficiency with far‐red/near‐infrared (NIR) light excitation due to low‐lying excited states that lead to rapid non‐radiative decays. Here, a neutral Ir(III) complex bearing distyryl boron dipyrromethene (BODIPY‐Ir) is reported to efficiently produce both ROS and hyperthermia upon far‐red light activation for potentiating in vivo tumor suppression through micellization of BODIPY‐Ir to form “Micelle‐Ir”. BODIPY‐Ir absorbs strongly at 550–750 nm with a band maximum at 685 nm, and possesses a long‐lived triplet excited state with sufficient non‐radiative decays. Upon micellization, BODIPY‐Ir formsJ‐type aggregates within Micelle‐Ir, which boosts both singlet oxygen generation and the photothermal effect through the high molar extinction coefficient and amplification of light‐to‐ROS/heat conversion, causing severe cell apoptosis. Bifunctional Micelle‐Ir that accumulates in tumors completely destroys orthotopic 4T1 breast tumors via synergistic PDT/photothermal therapy (PTT) damage under light irradiation, and enables remarkable suppression of metastatic nodules in the lungs, together without significant dark cytotoxicity. The present study offers an emerging approach to develop far‐red/NIR photosensitizers toward potent cancer therapy.

     
    more » « less
  3. Abstract

    This study employs TLD1433, a RuII‐based photodynamic therapy (PDT) agent in human clinical trials, as a benchmark to establish protocols for studying the excited‐state dynamics of photosensitizers (PSs)in cellulo, in the local environment provided by human cancer cells. Very little is known about the excited‐state properties of any PS in live cells, and for TLD1433, it isterra incognita. This contribution targets a general problem in phototherapy, which is how to interrogate the light‐triggered, function‐determining processes of the PSs in the relevant biological environment, and establishes methodological advances to study the ultrafast photoinduced processes for TLD1433 when taken up by MCF7 cells. We generalize the methodological developments and results in terms of molecular physics by applying them to TLD1433’s analogue TLD1633, making this study a benchmark to investigate the excited‐state dynamics of phototoxic compounds in the complex biological environment.

     
    more » « less
  4. Abstract

    This study employs TLD1433, a RuII‐based photodynamic therapy (PDT) agent in human clinical trials, as a benchmark to establish protocols for studying the excited‐state dynamics of photosensitizers (PSs)in cellulo, in the local environment provided by human cancer cells. Very little is known about the excited‐state properties of any PS in live cells, and for TLD1433, it isterra incognita. This contribution targets a general problem in phototherapy, which is how to interrogate the light‐triggered, function‐determining processes of the PSs in the relevant biological environment, and establishes methodological advances to study the ultrafast photoinduced processes for TLD1433 when taken up by MCF7 cells. We generalize the methodological developments and results in terms of molecular physics by applying them to TLD1433’s analogue TLD1633, making this study a benchmark to investigate the excited‐state dynamics of phototoxic compounds in the complex biological environment.

     
    more » « less
  5. Abstract

    Herein, this work reports the first synthetic vaccine adjuvants that attenuate potency in response to small, 1–2 °C changes in temperature about their lower critical solution temperature (LCST). Adjuvant additives significantly increase vaccine efficacy. However, adjuvants also cause inflammatory side effects, such as pyrexia, which currently limits their use. To address this, a thermophobic vaccine adjuvant engineered to attenuate potency at temperatures correlating to pyrexia is created. Thermophobic adjuvants are synthesized by combining a rationally designed trehalose glycolipid vaccine adjuvant with thermoresponsive poly‐N‐isoporpylacrylamide (NIPAM) via reversible addition fragmentation chain transfer (RAFT) polymerization. The resulting thermophobic adjuvants exhibit LCSTs near 37 °C, and self‐assembled into nanoparticles with temperature‐dependent sizes (90–270 nm). Thermophobic adjuvants activate HEK‐mMINCLE and other innate immune cell lines as well as primary mouse bone marrow derived dendritic cells (BMDCs) and bone marrow derived macrophages (BMDMs). Inflammatory cytokine production is attenuated under conditions mimicking pyrexia (above the LCST) relative to homeostasis (37 °C) or below the LCST. This thermophobic behavior correlated with decreased adjuvantRgis observed by DLS, as well as glycolipid‐NIPAM shielding interactions are observed by NOESY‐NMR. In vivo, thermophobic adjuvants enhance efficacy of a whole inactivated influenza A/California/04/2009 virus vaccine, by increasing neutralizing antibody titers and CD4+/44+/62L+lung and lymph node central memory T cells, as well as providing better protection from morbidity after viral challenge relative to unadjuvanted control vaccine. Together, these results demonstrate the first adjuvants with potency regulated by temperature. This work envisions that with further investigation, this approach can enhance vaccine efficacy while maintaining safety.

     
    more » « less