Abstract We report noncovalent assemblies of iRGD peptides and methylene blue dyes via electrostatic and hydrophobic stacking. These resulting nanomaterials could bind to cancer cells, image them with photoacoustic signal, and then treat them via photodynamic therapy. We first assessed the optical properties and physical properties of the materials. We then evaluated their utility for live cell targeting, in vivo imaging, and in vivo photodynamic toxicity. We tuned the performance of iRGD by adding aspartic acid (DD) or tryptophan doublets (WW) to the peptide to promote electrostatic or hydrophobic stacking with methylene blue, respectively. The iRGD-DD led to 150-nm branched nanoparticles, but iRGD-WW produced 200-nm nano spheres. The branched particles had an absorbance peak that was redshifted to 720 nm suitable for photoacoustic signal. The nanospheres had a peak at 680 nm similar to monomeric methylene blue. Upon continuous irradiation, the nanospheres and branched nanoparticles led to a 116.62% and 94.82% increase in reactive oxygen species in SKOV-3 cells relative to free methylene blue at isomolar concentrations suggesting photodynamic toxicity. Targeted uptake was validated via competitive inhibition. Finally, we used in vivo bioluminescent signal to monitor tumor burden and the effect of for photodynamic therapy: The nanospheres had little impact versus controls (p = 0.089), but the branched nanoparticles slowed SKOV-3 tumor burden by 75.9% (p < 0.05).
more »
« less
Adjuvants that Empower the Action of Photodynamic Therapy
Abstract Compounds have been devised whose supportive actions make them important adjuvants in the priming of photosensitization to selectively target cancer cells. Here, we highlight the paper by Maytin and Hasan in this issue ofPhotochemistry & Photobiology, which describes adjuvants methotrexate, 5‐fluorouracil, vitamin D and its analogs leading to improved photodynamic therapy outcome. These small molecule adjuvants act by different mechanisms to enhance the cytotoxicity in tumor cells and the therapeutic effect in cancers. These findings add to the list of strategies for enhancement of photodynamic therapy.
more »
« less
- Award ID(s):
- 1856765
- PAR ID:
- 10457966
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Photochemistry and Photobiology
- Volume:
- 96
- Issue:
- 3
- ISSN:
- 0031-8655
- Page Range / eLocation ID:
- p. 725-727
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract P‐glycoprotein (P‐gp, ABCB1) is a well‐researched ATP‐binding cassette (ABC) drug efflux transporter linked to the development of cancer multidrug resistance (MDR). Despite extensive studies, approved therapies to safely inhibit P‐gp in clinical settings are lacking, necessitating innovative strategies beyond conventional inhibitors or antibodies to reverse MDR. Photodynamic therapy is a globally approved cancer treatment that uses targeted, harmless red light to activate non‐toxic photosensitizers, confining its cytotoxic photochemical effects to disease sites while sparing healthy tissues. This study demonstrates that photodynamic priming (PDP), a sub‐cytotoxic photodynamic therapy process, can inhibit P‐gp function by modulating cellular respiration and ATP levels in light accessible regions. Using chemoresistant (VBL‐MDA‐MB‐231) and chemosensitive (MDA‐MB‐231) triple‐negative breast cancer cell lines, we showed that PDP decreases mitochondrial membrane potential by 54.4% ± 30.4 and reduces mitochondrial ATP production rates by 94.9% ± 3.46. Flow cytometry studies showed PDP can effectively improve the retention of P‐gp substrates (calcein) by up to 228.4% ± 156.3 in chemoresistant VBL‐MDA‐MB‐231 cells, but not in chemosensitive MDA‐MB‐231 cells. Further analysis revealed that PDP did not alter the cell surface expression level of P‐gp in VBL‐MDA‐MB‐231 cells. These findings indicate that PDP can reduce cellular ATP below the levels that is required for the function of P‐gp and improve intracellular substrate retention. We propose that PDP in combination with chemotherapy drugs, might improve the efficacy of chemotherapy and overcome cancer MDR.more » « less
-
Abstract This study employs TLD1433, a RuII‐based photodynamic therapy (PDT) agent in human clinical trials, as a benchmark to establish protocols for studying the excited‐state dynamics of photosensitizers (PSs)in cellulo, in the local environment provided by human cancer cells. Very little is known about the excited‐state properties of any PS in live cells, and for TLD1433, it isterra incognita. This contribution targets a general problem in phototherapy, which is how to interrogate the light‐triggered, function‐determining processes of the PSs in the relevant biological environment, and establishes methodological advances to study the ultrafast photoinduced processes for TLD1433 when taken up by MCF7 cells. We generalize the methodological developments and results in terms of molecular physics by applying them to TLD1433’s analogue TLD1633, making this study a benchmark to investigate the excited‐state dynamics of phototoxic compounds in the complex biological environment.more » « less
-
Abstract Progress is needed before explicit photodynamic therapy (PDT) dosimetry can treat peritoneal carcinomatosis and yet spare all healthy tissue. A report by Cengel et al. in this issue ofPhotochemistry & Photobiologyon tissue evaluation in a canine model may bring that goal a step closer and may even bedogma‐changing.more » « less
-
Abstract Photodynamic therapy (PDT) is currently limited by the inability of photosensitizers (PSs) to enter cancer cells and generate sufficient reactive oxygen species. Utilizing phosphorescent triplet states of novel PSs to generate singlet oxygen offers exciting possibilities for PDT. Here, we report phosphorescent octahedral molybdenum (Mo)‐based nanoclusters (NC) with tunable toxicity for PDT of cancer cells without use of rare or toxic elements. Upon irradiation with blue light, these molecules are excited to their singlet state and then undergo intersystem crossing to their triplet state. These NCs display surprising tunability between their cellular cytotoxicity and phototoxicity by modulating the apical halide ligand with a series of short chain fatty acids from trifluoroacetate to heptafluorobutyrate. The NCs are effective in PDT against breast, skin, pancreas, and colon cancer cells as well as their highly metastatic derivatives, demonstrating the robustness of these NCs in treating a wide variety of aggressive cancer cells. Furthermore, these NCs are internalized by cancer cells, remain in the lysosome, and can be modulated by the apical ligand to produce singlet oxygen. Thus, (Mo)‐based nanoclusters are an excellent platform for optimizing PSs. Our results highlight the profound impact of molecular nanocluster chemistry in PDT applications.more » « less
An official website of the United States government
