skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Quantifying Losses and Assessing the Photovoltage Limits in Metal–Insulator–Semiconductor Water Splitting Systems
Abstract Metal–insulator–semiconductor (MIS) photo‐electrocatalysts offer a pathway to stable and efficient solar water splitting. Initially motivated as a strategy to protect the underlying semiconductor photoabsorber from harsh operating conditions, the thickness of the insulator layer in MIS systems has recently been shown to be a critical design parameter which can be tuned to optimize the photovoltage. This study analyzes the underlying mechanism by which the thickness of the insulator layer impacts the performance of MIS photo‐electrocatalysts. A concrete example of an Ir/HfO2/n‐Si MIS system is investigated for the oxygen evolution reaction. The results of combined experiments and modeling suggest that the insulator thickness affects the photovoltage i) favorably by controlling the flux of charge carriers from the semiconductor to the metal electrocatalyst and ii) adversely by introducing nonidealities such as surface defect states which limit the generated photovoltage. It is important to quantify these different mechanisms and suggest avenues for addressing these nonidealities to enable the rational design of MIS systems that can approach the fundamental photovoltage limits. The analysis described in this contribution as well as the strategy toward optimizing the photovoltage are generalizable to other MIS systems.  more » « less
Award ID(s):
1803991 1702471 1800197
PAR ID:
10458266
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Energy Materials
Volume:
10
Issue:
12
ISSN:
1614-6832
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Metal-insulator-semiconductor (MIS) structures are widely used in Si-based solar water-splitting photoelectrodes to protect the Si layer from corrosion. Typically, there is a tradeoff between efficiency and stability when optimizing insulator thickness. Moreover, lithographic patterning is often required for fabricating MIS photoelectrodes. In this study, we demonstrate improved Si-based MIS photoanodes with thick insulating layers fabricated using thin-film reactions to create localized conduction paths through the insulator and electrodeposition to form metal catalyst islands. These fabrication approaches are low-cost and highly scalable, and yield MIS photoanodes with low onset potential, high saturation current density, and excellent stability. By combining this approach with a p+n-Si buried junction, further improved oxygen evolution reaction (OER) performance is achieved with an onset potential of 0.7 V versus reversible hydrogen electrode (RHE) and saturation current density of 32 mA/cm2under simulated AM1.5G illumination. Moreover, in stability testing in 1 M KOH aqueous solution, a constant photocurrent density of ~22 mA/cm2is maintained at 1.3 V versus RHE for 7 days. 
    more » « less
  2. Abstract 2D semiconductors such as monolayer molybdenum disulfide (MoS2) are promising material candidates for next‐generation nanoelectronics. However, there are fundamental challenges related to their metal–semiconductor (MS) contacts, which limit the performance potential for practical device applications. In this work, 2D monolayer hexagonal boron nitride (h‐BN) is exploited as an ultrathin decorating layer to form a metal–insulator–semiconductor (MIS) contact, and an innovative device architecture is designed as a platform to reveal a novel diode‐like selective enhancement of the carrier transport through the MIS contact. The contact resistance is significantly reduced when the electrons are transported from the semiconductor to the metal, but is barely affected when the electrons are transported oppositely. A concept of carrier collection barrier is proposed to interpret this intriguing phenomenon as well as a negative Schottky barrier height obtained from temperature‐dependent measurements, and the critical role of the collection barrier at the drain end is shown for the overall transistor performance. 
    more » « less
  3. Ultra-wide bandgap (UWBG) semiconductors are promising for many applications, such as power electronics and deep-ultraviolet photonics. In this research, UWBG β-phase magnesium gallium oxide (MgGaO) thin films with a bandgap of 5.1 eV were grown using low-temperature homo-buffer layers in a plasma-assisted molecular beam epitaxy system. The role of the growth temperature and thickness of low-temperature buffer layer on the quality of the active layer was studied using x-ray diffraction and transmission electron microscopy and by analyzing the properties of metal–semiconductor–metal photodetector devices based on these films. It is found that lower buffer growth temperature at 300 °C leads to higher crystal quality of active layer. For the same low buffer growth temperature, different crystal quality in the active layer is attained with different buffer layer thickness. A buffer layer thickness at 40 nm has the best active layer quality with the highest photo current under 265 nm illumination and long decay time as a result of reduced recombination of photo-generated carriers through fewer defects in the active layer. 
    more » « less
  4. Metal–insulator–semiconductor/MIS-based photoelectrochemical (PEC) water splitting provides a scalable and integrated platform to harness renewable solar energy for green hydrogen production. 
    more » « less
  5. Surface acoustic wave devices have many applications in signal processing, radio frequency (RF) communications, and sensing [1]. The most common utilization of these devices is for filtering electromagnetic signals in communications systems. However, since the physical dimensions of the inter-digitated transducers (IDT) determine the frequency response, it is very difficult to attain tunable devices for programmable applications. Great effort has been made to achieve an integrated solution to this in III-V semiconductors. One such work utilizes the piezoelectric the GaN buffer layer in an AlGaN/GaN epi for acoustic propagation, while a metal-insulator-semiconductor (MIS) structure is used to tune the SAW response [2]. Unfortunately, the MIS structure results in a weak interaction only achieving a phase tunability of 0.07%. Recent work, uses thin film Zinc Oxide (ZnO) as a piezoelectric on top of n-type ZnO on GaN achieving a high tunability of. 9% [3]. In this work, we demonstrate a ZnO on AIGaN/GaN heterostructure capable of achieving high tunability as well as impacting properties of the SAW filter not previously reported. 
    more » « less